LTC4061
13
4061fd
applicaTions inForMaTion
CHARGE MODE
FULL CURRENT
CHRG STATE:
PULL-DOWN IF I
BAT
> I
DETECT
Hi-Z IF I
BAT
< I
DETECT
CHARGE TIME
ELAPSES
1/4 CHARGE TIME
ELAPSES
BAT < 4.1V
4061 F03
TRICKLE CHARGE MODE
1/10TH FULL CURRENT
BAT > 2.9V
BAT < 2.9V
2.9V < BAT < 4.1V
BAT > 4.1V
EN = 5V
OR
UVLO CONDITION
STANDBY MODE
NO CHARGE CURRENT
CHRG STATE: Hi-Z
SHUTDOWN MODE
I
CC
DROPS TO 20µA
CHRG STATE: Hi-Z
CHRG STATE: PULL-DOWN
DEFECTIVE BATTERY
FAULT MODE
NO CHARGE CURRENT
CHRG STATE: PULSING
RECHARGE MODE
FULL CURRENT
CHRG STATE:
PULL-DOWN IF I
BAT
> I
DETECT
Hi-Z IF I
BAT
< I
DETECT
1/2 CHARGE
TIME ELAPSES
POWER ON
EN = 0V
OR UVLO
CONDITION
STOPS
Figure 3. State Diagram of a Charge Cycle Using Charge Time Termination
LTC4061
14
4061fd
applicaTions inForMaTion
CHARGE MODE
FULL CURRENT
I
BAT
< I
DETECT
IN VOLTAGE MODE
4061 F04
TRICKLE CHARGE MODE
1/10TH FULL CURRENT
BAT > 2.9V
BAT < 2.9V
2.9V < BAT < 4.1V
BAT > 4.1V
BAT < 4.1V
EN = 5V
OR
UVLO CONDITION
STANDBY MODE
NO CHARGE CURRENT
CHRG STATE: Hi-Z
SHUTDOWN MODE
I
CC
DROPS TO 20µA
CHRG STATE: Hi-Z
CHRG STATE: PULL-DOWN
CHRG STATE: PULL-DOWN
POWER ON
EN = 0V
OR UVLO
CONDITION
STOPS
CHARGE MODE
FULL CURRENT
4061 F05
TRICKLE CHARGE MODE
1/10TH FULL CURRENT
BAT > 2.9V
BAT < 2.9V
2.9V < BAT
EN = 5V
OR
UVLO CONDITION
SHUTDOWN MODE
I
CC
DROPS TO 20µA
CHRG STATE: Hi-Z
CHRG STATE: PULL-DOWN
POWER ON
EN = 0V
OR UVLO
CONDITION
STOPS
CHRG STATE:
PULL-DOWN IF I
BAT
> I
DETECT
Hi-Z IF I
BAT
< I
DETECT
Figure 4. State Diagram of a Charge Cycle Using Charge Current Termination
Figure 5. State Diagram of a Charge Cycle Using User-Selectable Termination
LTC4061
15
4061fd
applicaTions inForMaTion
Programming C/10 Current Detection/Termination
In most cases, an external resistor, R
DET
, is needed to set
the charge current detection threshold, I
DETECT
. However,
when setting I
DETECT
to be 1/10th of I
CHG
, the I
DET
pin
can be connected directly to the PROG pin. This reduces
the component count, as shown in Figure 6.
Power
Dissipation
When designing the battery charger circuit, it is not neces-
sary to design for worst-case power dissipation scenarios
because the LTC4061 automatically reduces the charge
current during high power conditions. The conditions
that cause the LTC4061 to reduce charge current through
thermal feedback can be approximated by considering the
power dissipated in the IC. Most of the power dissipation
is generated from the internal charger MOSFET. Thus, the
power dissipation is calculated to be approximately:
P
D
= (V
CC
– V
BAT
) • I
BAT
P
D
is the power dissipated, V
CC
is the input supply voltage,
V
BAT
is the battery voltage and I
BAT
is the charge current.
The approximate ambient temperature at which the thermal
feedback begins to protect the IC is:
T
A
= 105°C – P
D
θ
JA
T
A
= 105°C – (V
CC
– V
BAT
) • I
BAT
θ
JA
Example: An LTC4061 operating from a 5V wall adapter
is programmed to supply 800mA full-scale current to a
discharged Li-Ion battery with a voltage of 3.3V. Assuming
θ
JA
is 40°C/W (see Thermal Considerations), the ambient
temperature at which the LTC4061 will begin to reduce the
charge current is approximately:
T
A
= 105°C – (5V – 3.3V) • (800mA) • 40°C/W
T
A
= 105°C – 1.36W • 40°C/W = 105°C – 54.4°C
T
A
= 50.6°C
The LTC4061 can be used above 50.6°C ambient, but
the charge current will be reduced from 800mA. The ap-
proximate current at a given ambient temperature can be
approximated by:
I
C T
V V
BAT
A
CC BAT JA
=
°105
( ) θ
Using the previous example with an ambient tem-
perature of 60°C, the charge current will be reduced to
approximately:
I
C C
V V C W
C
C A
I
BAT
BAT
=
° °
°
=
°
°
=
105 60
5 3 3 40
45
68
( . ) / /
6662mA
When PROG and I
DET
are connected in this way, the full-
scale charge current, I
CHG
, is programmed with a different
equation:
R
V
I
I
V
R
PROG
CHG
CHG
PROG
= =
500 500
,
Stability Considerations
The battery charger constant voltage mode feedback loop
is stable without any compensation provided a battery
is connected. However, a 1µF capacitor with a 1Ω series
resistor to GND is recommended at the BAT pin to reduce
noise when no battery is present.
When the charger is in constant current mode, the PROG
pin is in the feedback loop, not the battery. The constant
current stability is affected by the impedance at the PROG
pin. With no additional capacitance on the PROG pin, the
charger is stable with program resistor values as high as
10kΩ; however, additional capacitance on this node reduces
the maximum allowed program resistor value.
+
V
CC
PROG
I
DET
V
IN
BAT
500mA
TIMER
R
DET
2k
R
PROG
2k
LTC4061
GND
+
V
CC
PROG
I
DET
V
IN
4061 F06
BAT
500mA
TIMER
R
PROG
1k
LTC4061
GND
C/5
C/5
Figure 6. Two Circuits That Charge at 500mA
Full-Scale Current and Terminate at 50mA

LTC4061EDD#TRPBF

Mfr. #:
Manufacturer:
Analog Devices / Linear Technology
Description:
Battery Management St&alone Lin Li-Ion Bat Chr w/ Thermisto
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union

Products related to this Datasheet