MAX6636
7-Channel Precision Temperature Monitor
4 _______________________________________________________________________________________
Typical Operating Characteristics
(V
CC
= 3.3V, V
STBY
= V
CC
, T
A
= +25°C, unless otherwise noted.)
SOFTWARE STANDBY SUPPLY CURRENT
vs. SUPPLY VOLTAGE
MAX6636 toc01
SUPPLY VOLTAGE (V)
STANDBY SUPPLY CURRENT (μA)
5.34.84.3
3.8
1
2
3
4
5
6
7
8
9
10
11
12
0
3.3
SUPPLY CURRENT
vs. SUPPLY VOLTAGE
MAX6636 toc02
SUPPLY VOLTAGE (V)
SUPPLY CURRENT (μA)
5.34.8
3.8 4.3
325
330
335
340
350
345
355
360
320
3.3
-4
-2
-3
0
-1
2
1
3
05025 75 100 125
REMOTE TEMPERATURE ERROR
vs. REMOTE-DIODE TEMPERATURE
MAX6636 toc03
REMOTE-DIODE TEMPERATURE (°C)
TEMPERATURE ERROR (°C)
-4
-3
-2
-1
0
1
2
3
4
0 25 50 75 100 125
LOCAL TEMPERATURE ERROR
vs. DIE TEMPERATURE
MAX6636 toc04
DIE TEMPERATURE (°C)
TEMPERATURE ERROR (°C)
REMOTE-DIODE TEMPERATURE ERROR
vs. POWER-SUPPLY NOISE FREQUENCY
MAX6636 toc05
FREQUENCY (MHz)
TEMPERATURE ERROR (°C)
-4
-3
-2
-1
0
1
2
3
4
5
-5
0.1 1
100mV
P-P
LOCAL TEMPERATURE ERROR
vs. POWER-SUPPLY NOISE FREQUENCY
MAX6636 toc06
FREQUENCY (MHz)
TEMPERATURE ERROR (°C)
0.10.01
-4
-3
-2
-1
0
1
2
3
4
5
-5
0.001 1
100mV
P-P
REMOTE TEMPERATURE ERROR
vs. COMMON-MODE NOISE FREQUENCY
MAX6636 toc07
FREQUENCY (MHz)
TEMPERATURE ERROR (°C)
10.10.01
-4
-3
-2
-1
0
1
2
3
4
5
-5
0.001 10
100mV
P-P
MAX6636
7-Channel Precision Temperature Monitor
_______________________________________________________________________________________ 5
REMOTE TEMPERATURE ERROR
vs. COMMON-MODE NOISE FREQUENCY
MAX6636 toc08
FREQUENCY (MHz)
TEMPERATURE ERROR (°C)
10.10.01
-4
-3
-2
-1
0
1
2
3
4
5
-5
0.001 10
100mV
P-P
Typical Operating Characteristics (continued)
(V
CC
= 3.3V, V
STBY
= V
CC
, T
A
= +25°C, unless otherwise noted.)
TEMPERATURE ERROR
vs. DXP-DXN CAPACITANCE
MAX6636 toc09
DXP-DXN CAPACITANCE (nF)
TEMPERATURE ERROR (°C)
10
-4.5
-4.0
-3.5
-3.0
-2.5
-2.0
-1.5
-1.0
-0.5
0
-5.0
1 100
Pin Description
PIN NAME FUNCTION
1 DXP1
Combined Current Source and A/D Positive Input for Channel 1 Remote Diode. Connect to the anode
of a remote-diode-connected temperature-sensing transistor. Leave unconnected or connect to V
CC
if
no remote diode is used. Place a 2200pF capacitor between DXP1 and DXN1 for noise filtering.
2 DXN1
Cathode Input for Channel 1 Remote Diode. Connect the cathode of the channel 1 remote-diode-
connected transistor to DXN1. Internally connected to GND.
3 DXP2
Combined Current Source and A/D Positive Input for Channel 2 Remote Diode. Connect to the anode
of a remote-diode-connected temperature-sensing transistor. Leave unconnected or connect to V
CC
if
no remote diode is used. Place a 2200pF capacitor between DXP2 and DXN2 for noise filtering.
4 DXN2
Cathode Input for Channel 2 Remote Diode. Connect the cathode of the channel 2 remote-diode-
connected transistor to DXN2.
5 DXP3
Combined Current Source and A/D Positive Input for Channel 3 Remote Diode. Connect to the anode
of a remote-diode-connected temperature-sensing transistor. Leave unconnected or connect to V
CC
if
no remote diode is used. Place a 2200pF capacitor between DXP3 and DXN3 for noise filtering.
6 DXN3
Cathode Input for Channel 3 Remote Diode. Connect the cathode of the channel 3 remote-diode-
connected transistor to DXN3.
7 DXP4
Combined Current Source and A/D Positive Input for Channel 4 Remote Diode. Connect to the anode
of a remote-diode-connected temperature-sensing transistor. Leave unconnected or connect to V
CC
if
no remote diode is used. Place a 2200pF capacitor between DXP4 and DXN4 for noise filtering.
8 DXN4
Cathode Input for Channel 4 Remote Diode. Connect the cathode of the channel 4 remote-diode-
connected transistor to DXN4.
MAX6636
Detailed Description
The MAX6636 is a precision multichannel temperature
monitor that features one local and six remote tempera-
ture-sensing channels with a programmable alert
threshold for each temperature channel and a program-
mable overtemperature threshold for channels 1, 4, 5,
and 6 (see Figure 1). Communication with the MAX6636
is achieved through the SMBus serial interface and a
dedicated alert pin. The alarm outputs, OVERT and
ALERT, assert if the software-programmed temperature
thresholds are exceeded. ALERT typically serves as an
interrupt, while OVERT can be connected to a fan, sys-
tem shutdown, or other thermal-management circuitry.
ADC Conversion Sequence
In the default conversion mode, the MAX6636 starts the
conversion sequence by measuring the temperature on
channel 1, followed by 2, 3, local channel, 4, 5, and 6.
The conversion result for each active channel is stored
in the corresponding temperature data register.
In some systems, one of the remote thermal diodes may
be monitoring a location that experiences temperature
changes that occur much more rapidly than in the other
channels. If faster temperature changes must be moni-
tored in one of the temperature channels, the MAX6636
allows channel 1 to be monitored at a faster rate than
the other channels. In this mode (set by writing a 1 to bit
4 of the configuration 1 register), measurements of
channel 1 alternate with measurements of the other
channels. The sequence becomes channel 1, channel
2, channel 1, channel 3, channel 1, etc. Note that the
time required to measure all seven channels is consid-
erably greater in this mode than in the default mode.
Low-Power Standby Mode
Enter software standby mode by setting the STOP bit to
1 in the configuration 1 register. Enter hardware standby
by pulling STBY low. Software standby mode disables
the ADC and reduces the supply current to approxi-
mately 30µA. Hardware standby mode halts the ADC
clock, but the supply current is approximately 350µA.
During either software or hardware standby, data is
retained in memory, and the SMBus interface is active
and listening for SMBus commands. The timeout is
enabled if a START condition is recognized on SMBus.
Activity on the SMBus causes the supply current to
increase. If a standby command is received while a con-
version is in progress, the conversion cycle is interrupt-
7-Channel Precision Temperature Monitor
6 _______________________________________________________________________________________
PIN NAME FUNCTION
9 DXP5
Combined Current Source and A/D Positive Input for Channel 5 Remote Diode. Connect to the anode
of a remote-diode-connected temperature-sensing transistor. Leave unconnected or connect to V
CC
if
no remote diode is used. Place a 2200pF capacitor between DXP5 and DXN5 for noise filtering.
10 DXN5
Cathode Input for Channel 5 Remote Diode. Connect the cathode of the channel 5 remote-diode-
connected transistor to DXN5.
11 DXN6
Cathode Input for Channel 6 Remote Diode. Connect the cathode of the channel 6 remote-diode-
connected transistor to DXN6.
12 DXP6
Combined Current Source and A/D Positive Input for Channel 6 Remote Diode. Connect to the anode
of a remote-diode-connected temperature-sensing transistor. Leave unconnected or connect to V
CC
if
no remote diode is used. Place a 2200pF capacitor between DXP6 and DXN6 for noise filtering.
13 STBY
Active-Low Standby Input. Drive STBY logic-low to place the MAX6636 in standby mode, or logic-high
for operate mode. Temperature and threshold data are retained in standby mode.
14 N.C. No Connection. Must be connected to ground.
15 OVERT
Overtemperature Active-Low, Open-Drain Output. OVERT asserts low when the temperature of
channels 1, 4, 5, and 6 exceeds the programmed threshold limit.
16 V
CC
Supply Voltage Input. Bypass to GND with a 0.1µF capacitor.
17 ALERT
SMBus Alert (Interrupt), Active-Low, Open-Drain Output. ALERT asserts low when the temperature of
any channel exceeds the programmed ALERT threshold.
18 SMBDATA SMBus Serial-Data Input/Output. Connect to a pullup resistor.
19 SMBCLK SMBus Serial-Clock Input. Connect to a pullup resistor.
20 GND Ground
Pin Description (continued)

MAX6636UP9A+T

Mfr. #:
Manufacturer:
Maxim Integrated
Description:
Board Mount Temperature Sensors 7Ch Precision Temperature Monito
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union

Products related to this Datasheet