HGTP3N60A4D

©2001 Fairchild Semiconductor Corporation HGT1S3N60A4DS, HGTP3N60A4D Rev. B
FIGURE 21. RECOVERY TIMES vs RATE OF CHANGE OF
CURRENT
FIGURE 22. STORED CHARGE vs RATE OF CHANGE OF
CURRENT
FIGURE 23. IGBT NORMALIZED TRANSIENT THERMAL RESPONSE, JUNCTION TO CASE
Test Circuit and Waveforms
FIGURE 24. INDUCTIVE SWITCHING TEST CIRCUIT FIGURE 25. SWITCHING TEST WAVEFORMS
Typical Performance Curves Unless Otherwise Specified (Continued)
400 800
t
rr
, RECOVERY TIMES (ns)
di
EC
/dt, RATE OF CHANGE OF CURRENT (A/µs)
200 600
6
22
10
14
18
26
1000
125
o
C t
a
125
o
C t
b
25
o
C t
a
25
o
C t
b
I
EC
= 3A, V
CE
= 390V
160
80
40
0
Qrr, REVERSE RECOVERY CHARGE (nc)
di
EC
/dt, RATE OF CHANGE OF CURRENT (A/µs)
1000200 400
200
600 800
120
125
o
C, I
EC
= 3A
125
o
C, I
EC
= 1.5A
25
o
C, I
EC
= 20A
25
o
C, I
EC
= 10A
V
CE
= 390V
t
1
, RECTANGULAR PULSE DURATION (s)
Z
θJC
, NORMALIZED THERMAL RESPONSE
10
-2
10
-1
10
0
10
-5
10
-3
10
-2
10
-1
10
0
10
-4
t
1
t
2
P
D
DUTY FACTOR, D = t
1
/ t
2
PEAK T
J
= (P
D
X Z
θJC
X R
θJC
) + T
C
SINGLE PULSE
0.1
0.2
0.5
0.05
0.01
0.02
R
G
= 50
L = 1mH
V
DD
= 390V
+
-
HGTP3N60A4D
DUT
DIODE TA49369
t
fI
t
d(OFF)I
t
rI
t
d(ON)I
10%
90%
10%
90%
V
CE
I
CE
V
GE
I
CE
E
OFF
E
0N2
HGT1S3N60A4DS, HGTP3N60A4D
©2001 Fairchild Semiconductor Corporation HGT1S3N60A4DS, HGTP3N60A4D Rev. B
Handling Precautions for IGBTs
Insulated Gate Bipolar Transistors are susceptible to
gate-insulation damage by the electrostatic discharge of
energy through the devices. When handling these devices,
care should be exercised to assure that the static charge
built in the handler’s body capacitance is not discharged
through the device. With proper handling and application
procedures, however, IGBTs are currently being extensively
used in production by numerous equipment manufacturers in
military, industrial and consumer applications, with virtually
no damage problems due to electrostatic discharge. IGBTs
can be handled safely if the following basic precautions are
taken:
1. Prior to assembly into a circuit, all leads should be kept
shorted together either by the use of metal shorting
springs or by the insertion into conductive material such
as “ECCOSORBD™ LD26” or equivalent.
2. When devices are removed by hand from their carriers,
the hand being used should be grounded by any suitable
means - for example, with a metallic wristband.
3. Tips of soldering irons should be grounded.
4. Devices should never be inserted into or removed from
circuits with power on.
5. Gate Voltage Rating - Never exceed the gate-voltage
rating of V
GEM
. Exceeding the rated V
GE
can result in
permanent damage to the oxide layer in the gate region.
6. Gate Termination - The gates of these devices are
essentially capacitors. Circuits that leave the gate
open-circuited or floating should be avoided. These
conditions can result in turn-on of the device due to
voltage buildup on the input capacitor due to leakage
currents or pickup.
7. Gate Protection - These devices do not have an internal
monolithic Zener diode from gate to emitter. If gate
protection is required an external Zener is recommended.
Operating Frequency Information
Operating frequency information for a typical device
(Figure 3) is presented as a guide for estimating device
performance for a specific application. Other typical
frequency vs collector current (I
CE
) plots are possible using
the information shown for a typical unit in Figures 6, 7, 8, 9
and 11. The operating frequency plot (Figure 3) of a typical
device shows f
MAX1
or f
MAX2
; whichever is smaller at each
point. The information is based on measurements of a
typical device and is bounded by the maximum rated
junction temperature.
f
MAX1
is defined by f
MAX1
= 0.05/(t
d(OFF)I
+ t
d(ON)I
).
Deadtime (the denominator) has been arbitrarily held to 10%
of the on-state time for a 50% duty factor. Other definitions
are possible. t
d(OFF)I
and t
d(ON)I
are defined in Figure 25.
Device turn-off delay can establish an additional frequency
limiting condition for an application other than T
JM
. t
d(OFF)I
is important when controlling output ripple under a lightly
loaded condition.
f
MAX2
is defined by f
MAX2
= (P
D
- P
C
)/(E
OFF
+ E
ON2
). The
allowable dissipation (P
D
) is defined by P
D
= (T
JM
- T
C
)/R
θJC
.
The sum of device switching and conduction losses must not
exceed P
D
. A 50% duty factor was used (Figure 3) and the
conduction losses (P
C
) are approximated by:
P
C
= (V
CE
x I
CE
)/2.
E
ON2
and E
OFF
are defined in the switching waveforms
shown in Figure 25. E
ON2
is the integral of the instantaneous
power loss (I
CE
x V
CE
) during turn-on and E
OFF
is the
integral of the instantaneous power loss (I
CE
x V
CE
) during
turn-off. All tail losses are included in the calculation for
E
OFF
; i.e., the collector current equals zero (I
CE
= 0).
HGT1S3N60A4DS, HGTP3N60A4D
DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER
NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD
DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT
OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT
RIGHTS, NOR THE RIGHTS OF OTHERS.
TRADEMARKS
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is
not intended to be an exhaustive list of all such trademarks.
LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.
As used herein:
1. Life support devices or systems are devices or
systems which, (a) are intended for surgical implant into
the body, or (b) support or sustain life, or (c) whose
failure to perform when properly used in accordance
with instructions for use provided in the labeling, can be
reasonably expected to result in significant injury to the
user.
2. A critical component is any component of a life
support device or system whose failure to perform can
be reasonably expected to cause the failure of the life
support device or system, or to affect its safety or
effectiveness.
PRODUCT STATUS DEFINITIONS
Definition of Terms
Datasheet Identification Product Status Definition
Advance Information
Preliminary
No Identification Needed
Obsolete
This datasheet contains the design specifications for
product development. Specifications may change in
any manner without notice.
This datasheet contains preliminary data, and
supplementary data will be published at a later date.
Fairchild Semiconductor reserves the right to make
changes at any time without notice in order to improve
design.
This datasheet contains final specifications. Fairchild
Semiconductor reserves the right to make changes at
any time without notice in order to improve design.
This datasheet contains specifications on a product
that has been discontinued by Fairchild semiconductor.
The datasheet is printed for reference information only.
Formative or
In Design
First Production
Full Production
Not In Production
OPTOLOGIC™
OPTOPLANAR™
PACMAN™
POP™
Power247™
PowerTrench
QFET™
QS™
QT Optoelectronics™
Quiet Series™
SILENT SWITCHER
FAST
FASTr™
FRFET™
GlobalOptoisolator™
GTO™
HiSeC™
ISOPLANAR™
LittleFET™
MicroFET™
MicroPak™
MICROWIRE™
Rev. H4
ACEx™
Bottomless™
CoolFET™
CROSSVOLT
DenseTrench™
DOME™
EcoSPARK™
E
2
CMOS
TM
EnSigna
TM
FACT™
FACT Quiet Series™
SMART START™
STAR*POWER™
Stealth™
SuperSOT™-3
SuperSOT™-6
SuperSOT™-8
SyncFET™
TinyLogic™
TruTranslation™
UHC™
UltraFET
STAR*POWER is used under license
VCX™

HGTP3N60A4D

Mfr. #:
Manufacturer:
ON Semiconductor
Description:
IGBT 600V 17A 70W TO220AB
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union

Products related to this Datasheet