IXBOD1-24R

H - 4
© 2000 IXYS All rights reserved
Symbol Test Conditions 2 BODs 3 BODs 4 BODs D-Version
I
D
T
VJ
= 125°C;V = 0,8x V
BO
100 100 100 100 µA
V
BO
V
BO
(T
VJ
) = V
BO, 25°C
[1 +
K
T
(T
VJ
- 25°C)]
I
RMS
f = 50 HZ; T
amb
= 50°C 2.0 1.4 1.1 0.3 A
connection pins soldered to printed circuit
(conductor 0,035x2mm)
I
AVM
1.25 0.9 0.7 0.2 A
I
SM
t
p
= 0.1 ms; T
amb
= 50°C non repetitive 200 200 200 50 A
I²t t
p
= 0.1 ms; T
amb
= 50°C 2 2 2 0.125 A
2
s
V
T
T
VJ
=125°C; I
T
= 5A 3.4 5.1 6.8 27 V
V
(TO)
For power-loss calculations only 2.2 3.3 4.4 17.5 V
r
T
T
VJ
=125°C 0.24 0.36 0.48 3
T
amb
-40...+125 -40...+125 -40...+125 -40...+125 °C
T
stg
-40...+125 -40...+125 -40...+125 -40...+125 °C
T
VJm
125 125 125 125 °C
K
T
Temperatur coefficient of V
BO
2·10
-3
2·10
-3
2·10
-3
2·10
-3
K
-1
K
P
coefficient for energy per pulse E
P
(material constant) 700 700 700 700 K/Ws
R
thJA
- natural convection 20 20 20 20 K/W
- with air speed 2 m/s 16 16 16 16 K/W
Weight typical 14 14 14 14 g
Breakover Diode Modules
V
BO
Standard BOD -
V Types Elements
1200 ±50 IXBOD 1 -12R(D) 2
1300 ±50 IXBOD 1 -13R(D) 2
1400 ±50 IXBOD 1 -14R(D) 2
1500 ±50 IXBOD 1 -15R(D) 2
1600 ±50 IXBOD 1 -16R(D) 2
1700 ±50 IXBOD 1 -17R(D) 2
1800 ±50 IXBOD 1 -18R(D) 2
1900 ±50 IXBOD 1 -19R(D) 2
V
BO
Standard BOD -
V Types Elements
2000 ±50 IXBOD 1 -20R(D) 3
2100 ±50 IXBOD 1 -21R(D) 3
2200 ±50 IXBOD 1 -22R(D) 3
2300 ±50 IXBOD 1 -23R(D) 3
2400 ±50 IXBOD 1 -24R(D) 3
2500 ±50 IXBOD 1 -25R(D) 3
2600 ±100 IXBOD 1 -26R(D) 3
2800 ±100 IXBOD 1 -28R(D) 3
3000 ±100 IXBOD 1 -30R(D) 3
3200 ±100 IXBOD 1 -32R(D) 3
V
BO
Standard BOD -
V Types Elements
3400 ±100 IXBOD 1 -34R 4
3600 ±100 IXBOD 1 -36R 4
3800 ±100 IXBOD 1 -38R 4
4000 ±100 IXBOD 1 -40R 4
4200 ±100 IXBOD 1 -42R 4
Symbol Test Conditions Characteristic Values both Versions R & RD 2 BODs 3 BODs 4 BODs
I
BO
T
VJ
=25°C 151515mA
I
H
T
VJ
=25°C 303030mA
V
H
T
VJ
=25°C 4 - 8 4 - 8 4 - 8 V
(dv/dt)
C
T
VJ
=50°C; V
D
= 0.67·(V
BO
+ 100V)
- V
BO
bis 1500V > 1000 - - V/µs
- V
BO
1600 - 2000V > 1500 - - V/µs
- V
BO
2100 - 2500V - > 2000 - V/µs
- V
BO
2600 - 3000V - > 2500 - V/µs
- V
BO
3200 - 3400V - - > 3000 V/µs
- V
BO
3600 - 4200V - - > 3500 V/µs
(di/dt)
C
T
VJ
= 125°C; V
D
= V
BO
; I
T
= 80A; f = 50 Hz 200 200 200 A/µs
t
q(typ)
T
VJ
= 125°CV
D
= 0.67·V
BO
; V
R
= 0V 150 150 150 µs
dv/dt
(lin.)
= 200V/µs; I
T
= 80A; di/dt = -10A/µs
IXBOD 1 -12R...42R(D)
2-3 BODs
Version: R
Version: RD
IXYS reserve at these the right to change limits, test conditions and dimensions; Data according to IEC 60747
032
H - 5
© 2000 IXYS All rights reserved
IXBOD 1 -12R...42R(D)
Fig. 8 Transient thermal resistance.
K
A
Dimensions in mm (1 mm = 0.0394")
Fig. 5 Energy per pulse for single BOD element
for trapezoidal wave current. E
P
must be multiplied
by number of elements for total energy.
Fig. 6 Energy per pulse for single BOD element
for exponentially decaying current pulse. E
P
must
be multiplied by number of elements for total
energy.
K
A
V
a
= 2 m/s
n = number of BOD-Elements in series
V
a
= 0 m/s
[K/W]
Z
thJA
t
[s]
Fig. 7 On-state voltage at T
VJ
= 125°C.
[V]
V
T
i
T
[A]
H - 6
© 2000 IXYS All rights reserved
Application
Protection of thyristors against overvoltages in forward
direction.
V
D
i
BOD
Thyristor
V
BO
(T
VJ
) = V
BO, 25°C
[1+KT(T
VJ
- 25°C)]
a. The maximum junction temperature shall be
calculated for a module IXBOD 1 -30R at an
ambient temperature T
a
= 60 °C, an exponentially
decaying current I
TM
= 40A, a pulsewidth tp = 2 µs,
an operating frequency f = 50 Hz and natural
convection. From the diagram Fig. 6 the energy per
pulse is obtained:
E
p1
= 6 x 10
-3
Ws
For a module IXBOD1-30R the number of single
IXBOD elements is:
n = 3
At natural air cooling the thermal resistance junction
to ambient amounts to (Fig.8):
R
thJA
= 20K/W
and the unknown temperature can be calculated as:
T
VJmax1
= T
a
+ n • f • E
p
• R
thJA
+ K
p
• E
p
T
VJmax1
= 60 + 18 + 4.2 = 82.2°C
b. If following these steady-state conditions an
overload for 1 minute occurs with I
TM
= 60 A and a
pulse-width tp = 4 µs at the same operating
frequency f = 50 Hz, then the resulting maximum
junction temperature is calculating as follows:
T
VJmax2
= T
VJmax1
+ (E
p2
-E
p1
) • n • f •Z
thJA
(t) + Kp • (E
p2
-E
p1
)
The diagrams Fig. 11 and Fig. 8 show
E
p2
= 14x10
-3
Ws
Z
thJA
(t = 1min) = 12K/W
From what follows:
T
VJmax2
= 82.2 + 14.4 + 5,6 = 102.2 °C
which is allowed because the maximum admissible
junction temperature T
VJM
= 125 °C.
Calculation example

IXBOD1-24R

Mfr. #:
Manufacturer:
Littelfuse
Description:
Sidacs 1 Amps 2400V
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union