22
LTC1929/LTC1929-PG
Design Example
As a design example, assume V
IN
= 5V (nominal), V
IN
=␣ 5.5V
(max), V
OUT
= 1.8V, I
MAX
= 20A, T
A
= 70°C and f␣ =␣ 300kHz.
The inductance value is chosen first based on a 30% ripple
current assumption. The highest value of ripple current
occurs at the maximum input voltage. Tie the FREQSET pin
to the INTV
CC
pin for 300kHz operation. The minimum
inductance for 30% ripple current is:
L
V
fI
V
V
V
kHz A
V
V
H
OUT OUT
IN
()
()()()
≥µ
1
18
300 30 10
1
18
55
135
.
%
.
.
.
A 1.5µH inductor will produce 27% ripple current. The
peak inductor current will be the maximum DC value plus
one half the ripple current, or 11.4A. The minimum on-
time occurs at maximum V
IN
:
t
V
Vf
V
V kHz
s
ON MIN
OUT
IN
()
==
()( )
18
5 5 300
11
.
.
.
The R
SENSE
resistors value can be calculated by using the
maximum current sense voltage specification with some
accomodation for tolerances:
R
mV
A
SENSE
=≈
50
11 4
0 004
.
.
The power dissipation on the topside MOSFET can be
easily estimated. Using a Siliconix Si4420DY for example;
R
DS(ON)
= 0.013, C
RSS
= 300pF. At maximum input
voltage with T
J
(estimated) = 110°C at an elevated ambient
temperature:
P
V
V
CC
VApF
kHz W
MAIN
=
()
+
()
°− °
()
[]
+
()()( )
()
=
18
55
10 1 0 005 110 25
0 013 1 7 5 5 10 300
300 0 65
2
2
.
.
.
...
.
The worst-case power disipated by the synchronous
MOSFET under normal operating conditions at elevated
ambient temperature and estimated 50°C junction tem-
perature rise is:
P
VV
V
A
W
SYNC
=
()()
()
=
55 18
55
10 1 48 0 013
129
2
..
.
..
.
A short-circuit to ground will result in a folded back current
of about:
I
mV
ns V
H
A
SC
=
+
()
µ
=
25
0 004
1
2
200 5 5
15
66
.
.
.
.
The worst-case power disipated by the synchronous
MOSFET under short-circuit conditions at elevated ambi-
ent temperature and estimated 50°C junction temperature
rise is:
P
VV
V
A
mW
SYNC
=
()()
()
=
55 18
55
66 148 0013
564
2
..
.
...
which is less than half of the normal, full-load dissipation.
Incidentally, since the load no longer dissipates power in
the shorted condition, total system power dissipation is
decreased by over 99%.
The duty factor for this application is:
DF
V
V
V
V
O
IN
== =
18
5
036
.
.
Using Figure 4, the RMS ripple current will be:
I
INRMS
= (20A)(0.23) = 4.6A
RMS
An input capacitor(s) with a 4.6A
RMS
ripple current rating
is required.
The output capacitor ripple current is calculated by using
the inductor ripple already calculated for each inductor
and multiplying by the factor obtained from Figure␣ 3
along with the calculated duty factor. The output ripple in
APPLICATIO S I FOR ATIO
WUU
U
23
LTC1929/LTC1929-PG
con
tinuous mode will be highest at the maximum input
voltage since the duty factor is <50%. The maximum
output current ripple is:
I
V
fL
at DF
I
V
kHz H
A
VmAmV
COUT
OUT
COUTMAX
RMS
OUTRIPPLE RMS RMS
=
()
=
()
µ
()
=
=Ω
()
=
03 33
18
300 1 5
03
12
20 1 2 24
.%
.
.
.
.
.
PC Board Layout Checklist
When laying out the printed circuit board, the following
checklist should be used to ensure proper operation of the
LTC1929. These items are also illustrated graphically in
the layout diagram of Figure␣ 11. Check the following in
your layout:
1) Are the signal and power grounds segregated? The
LTC1929 signal ground pin should return to the (–) plate
of C
OUT
separately. The power ground returns to the
sources of the bottom N-channel MOSFETs, anodes of the
Schottky diodes, and (–) plates of C
IN
, which should have
as short lead lengths as possible.
2) Does the LTC1929 V
OS
+
pin connect to the (+) plate(s)
of C
OUT
? Does the LTC1929 V
OS
pin connect to the (–)
plate(s) of C
OUT
? The resistive divider R1, R2 must be
connected between the V
DIFFOUT
and signal ground and
any feedforward capacitor across R1 should be as close as
possible to the LTC1929.
3) Are the SENSE
and SENSE
+
leads routed together with
minimum PC trace spacing? The filter capacitors between
SENSE
+
and SENSE
pin pairs should be as close as
possible to the LTC1929. Ensure accurate current sensing
with Kelvin connections.
4) Do the (+) plates of C
IN
connect to the drains of the
topside MOSFETs as closely as possible? This capacitor
provides the AC current to the MOSFETs. Keep the input
current path formed by the input capacitor, top and bottom
MOSFETs, and the Schottky diode on the same side of the
PC board in a tight loop to minimize conducted and
radiated EMI.
5) Is the INTV
CC
1µF ceramic decoupling capacitor con-
nected closely between
INTV
CC
and the power ground pin?
This capacitor carries the MOSFET driver peak currents. A
small value is used to allow placement immediately adja-
cent to the IC.
6) Keep the switching nodes, SW1 (SW2), away from
sensitive small-signal nodes. Ideally the switch nodes
should be placed at the furthest point from the LTC1929.
7) Use a low impedance source such as a logic gate to drive
the PLLIN pin and keep the lead as short as possible.
The diagram in Figure 9 illustrates all branch currents in
a 2-phase switching regulator. It becomes very clear after
studying the current waveforms why it is critical to keep
the high-switching-current paths to a small physical size.
High electric and magnetic fields will radiate from these
“loops” just as radio stations transmit signals. The out-
put capacitor ground should return to the negative termi-
nal of the input capacitor and not share a common
ground path with any switched current paths. The left half
of the circuit gives rise to the “noise” generated by a
switching regulator. The ground terminations of the
synchronous MOSFETs and Schottky diodes should re-
turn to the bottom plate(s) of the input capacitor(s) with
a short isolated PC trace since very high switched cur-
rents are present. A separate isolated path from the
bottom plate(s) of the input capacitor(s) should be used
to tie in the IC power ground pin (PGND) and the signal
ground pin (SGND). This technique keeps inherent sig-
nals generated by high current pulses from taking alter-
nate current paths that have finite impedances during the
total period of the switching regulator. External OPTI-
LOOP compensation allows overcompensation for PC
layouts which are not optimized but this is not the
recommended design procedure.
APPLICATIO S I FOR ATIO
WUU
U
24
LTC1929/LTC1929-PG
APPLICATIO S I FOR ATIO
WUU
U
Simplified Visual Explanation of How a 2-Phase
Controller Reduces Both Input and Output RMS Ripple
Current
A multiphase power supply significantly reduces the
amount of ripple current in both the input and output
capacitors. The RMS input ripple current is divided by, and
the effective ripple frequency is multiplied up by the
number of phases used (assuming that the input voltage
is greater than the number of phases used times the output
voltage). The output ripple amplitude is also reduced by,
and the effective ripple frequency is increased by the
number of phases used. Figure 10 graphically illustrates
the principle.
The worst-case RMS ripple current for a single stage
design peaks at twice the value of the output voltage . The
worst-case RMS ripple current for a two stage design
results in peaks at 1/4 and 3/4 of input voltage. When the
RMS current is calculated, higher effective duty factor
results and the peak current levels are divided as long as
the currents in each stage are balanced. Refer to Applica-
tion Note 19 for a detailed description of how to calculate
RMS current for the single stage switching regulator.
Figures 3 and 4 illustrate how the input and output
currents are reduced by using an additional phase. The
input current peaks drop in half and the frequency is
doubled for this 2-phase converter. The input capacity
requirement is thus reduced theoretically by a factor of
four! Ceramic input capacitors with their unbeatably low
ESR characteristics can be used.
Figure 4 illustrates the RMS input current drawn from the
input capacitance vs the duty cycle as determined by the
ratio of input and output voltage. The peak input RMS
current level of the single phase system is reduced by 50%
in a 2-phase solution due to the current splitting between
the two stages.
An interesting result of the 2-phase solution is that the V
IN
which produces worst-case ripple current for the input
capacitor, V
OUT
= V
IN
/2, in the single phase design pro-
duces zero input current ripple in the 2-phase design.
The output ripple current is reduced significantly when
compared to the single phase solution using the same
inductance value because the V
OUT
/L discharge current
term from the stage that has its bottom MOSFET on
subtracts current from the (V
IN
- V
OUT
)/L charging current
resulting from the stage which has its top MOSFET on. The
output ripple current is:
I
V
fL
DD
D
RIPPLE
OUT
=
−−
()
−+
2
12 1
12 1
where D is duty factor.
The input and output ripple frequency is increased by the
number of stages used, reducing the output capacity
requirements. When V
IN
is approximately equal to 2(V
OUT
)
as illustrated in Figures 3 and 4, very low input and output
ripple currents result.

LTC1929CG-PG#PBF

Mfr. #:
Manufacturer:
Analog Devices / Linear Technology
Description:
Switching Voltage Regulators Hi Pwr PolyPhase DC/DC Controllers
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union