ACPL-M62L-500E

4
Absolute Maximum Ratings
Parameter Symbol Min. Max. Units Condition
Storage Temperature T
S
-55 125
°C
Operating Temperature T
A
-40 105
°C
Reverse Input Voltage V
R
5 V
Supply Voltage V
DD
6.5 V
Average Forward Input Current I
F
8 mA
Output Current I
O
10 mA
Output Voltage V
O
–0.5 V
DD
+ 0.5 V
Input Power Dissipation P
I
14 mW
Output Power Dissipation P
O
20 mW
Lead Solder Temperature T
LS
260 °C for 10 sec., 1.6 mm below seating plane
Solder Reow Temperature Prole Refer to Solder Reow Prole section
Recommended Operating Conditions
Parameter Symbol Min. Max. Units
Operating Temperature T
A
-40 105
°C
Input Current, Low Level I
FL
0 250
µA
Input Current, High Level I
FH
2 6 mA
Power Supply Voltage V
DD
2.7 5.5 V
Forward Input Voltage V
F(OFF)
0.8 V
Electrical Specications (DC)
Over recommended temperature (T
A
= –40 °C to +105 °C) and supply voltage (2.7 V ≤ V
DD
≤ 3.6 V). All typical specica-
tions are at V
DD
= 3.3 V, T
A
= 25 °C.
Parameter Symbol Min. Typ. Max. Units Test Conditions
Input Forward Voltage V
F
0.95 1.3 1.7 V I
F
= 2.2 mA, Figure 1, Figure 2
Input Reverse Breakdown Voltage BV
R
3 5 V
I
R
= 10 µA
Logic High Output Current I
OH
4.5 50
µA
V
DD
= 3.3 V, I
F
= 250 µA, V
O
= 3.3 V
Logic Low Output Voltage V
OL
0.3 0.6 V
I
F
= 2.2 mA, I
O
=10 mA, R
L
=390
Input Threshold Current I
TH
0.7 1.5 mA Figure 3
Logic Low Output Supply Current I
DDL
0.8 1.5 mA Figure 4
Logic High Output Supply Current I
DDH
0.8 1.5 mA Figure 5
Input Capacitance C
IN
60 pF f = 1 MHz, V
F
= 0 V
Input Diode Temperature Coecient ΔV
F
/ΔT
A
-1.6 mV/°C I
F
= 2.2 mA
Over recommended temperature (T
A
= –40 °C to +10 5°C) and supply voltage (4.5 V ≤ V
DD
≤ 5.5 V). All typical specica-
tions are at V
DD
= 5 V, T
A
= 25 °C.
Parameter Symbol Min. Typ. Max. Units Test Conditions
Input Forward Voltage V
F
0.95 1.3 1.7 V I
F
= 2.2 mA, Figure 1, Figure 2
Input Reverse Breakdown Voltage BV
R
3 5 V
I
R
= 10 µA
Logic High Output Current I
OH
5.5 100
µA V
DD
= 5.5 V, I
F
= 250 µA, V
O
= 5.5 V
Logic Low Output Voltage V
OL
0.3 0.6 V
I
F
= 2.2 mA, I
O
= 8.4 mA, R
L
= 560
Input Threshold Current I
TH
0.7 1.5 mA Figure 3
Logic Low Output Supply Current I
DDL
0.8 1.5 mA Figure 4
Logic High Output Supply Current I
DDH
0.8 1.5 mA Figure 5
Input Capacitance C
IN
60 pF f = 1 MHz, V
F
= 0 V
Input Diode Temperature Coecient ΔV
F
/ΔT
A
-1.6
mV/°C
I
F
= 2.2 mA
5
Switching Specications (AC)
Over recommended temperature (T
A
= –40 °C to +105 °C), supply voltage (2.7 V ≤ V
DD
≤ 3.6 V). All typical specications
are at V
DD
= 3.3 V, T
A
= 25 °C.
Parameter Symbol Min. Typ. Max. Units Test Conditions
Propagation Delay Time to Logic
Low Output
[1]
t
PHL
46 80 ns
I
F
= 2.2 mA, V
I
= 5 V, R
T
= 1.5 k, C
L
= 15 pF
I
F
= 2.2 mA, V
I
= 3.3 V, R
T
= 700 , C
L
= 15 pF
R
L
= 390 Ω, Figure 6a, Figure 7a
Propagation Delay Time to Logic
High Output
[1]
t
PLH
40 80 ns
Pulse Width t
PW
100 ns
Pulse Width Distortion
[2]
PWD 6 30 ns
Propagation Delay Skew
[3]
t
PSK
30 ns
Output Rise Time (10% – 90%) t
R
12 ns
I
F
= 2.2 mA, V
I
= 5 V, R
T
= 1.5 k, C
L
= 15 pF, R
L
= 390
10 ns
I
F
= 2.2 mA, V
I
= 3.3 V, R
T
= 700 , C
L
= 15 pF, R
L
=390
Output Fall Time (90% - 10%) t
F
12 ns
I
F
= 2.2 mA, V
I
= 5 V, R
T
= 1.5 k, C
L
= 15 pF, R
L
= 390
10 ns
I
F
= 2.2 mA, V
I
= 3.3 V, R
T
= 700 , C
L
= 15 pF, R
L
=390
Static Common Mode Transient
Immunity at Logic High Output
[4]
| CM
H
| 20 35
kV/µs
V
CM
= 1000 V, T
A
= 25 °C, I
F
= 0 mA, C
L
= 15 pF,
R
L
= 390 , Figure 8
Static Common Mode Transient
Immunity at Logic Low Output
[5]
| CM
L
| 20 35
kV/µs
V
CM
= 1000 V, T
A
= 25 °C, V
I
= 5 V (R
T
=1.5 k) or V
I
=
3.3 V (RT=700), I
F
= 2.2 mA, C
L
= 15 pF, R
L
= 390 ,
Figure 8
Dynamic Common Mode Transient
Immunity
[6]
CMR
D
35
kV/µs
V
CM
= 1000 V, T
A
= 25 °C, I
F
= 2.2 mA, V
I
= 5 V (R
T
=1.5
k) or V
I
= 3.3 V (R
T
=700 ), 10 MBd data rate, the
absolute increase of PWD <10 ns, R
L
= 390
Over recommended temperature (T
A
= –40 °C to +105 °C), supply voltage (4.5 V ≤ V
DD
≤ 5.5 V). All typical specications
are at V
DD
= 5 V, T
A
= 25 °C.
Parameter Symbol Min. Typ. Max. Units Test Conditions
Propagation Delay Time to Logic
Low Output
[1]
t
PHL
46 80 ns
I
F
= 2.2 mA, V
I
= 5 V, R
T
=1.5 k, C
L
= 15 pF
I
F
= 2.2 mA, V
I
= 3.3 V, R
T
= 700 , C
L
= 15 pF
R
L
= 560 Ω, Figure 6b, Figure 7b
Propagation Delay Time to Logic
High Output
[1]
t
PLH
40 80 ns
Pulse Width t
PW
100 ns
Pulse Width Distortion
[2]
PWD 6 30 ns
Propagation Delay Skew
[3]
t
PSK
30 ns
Output Rise Time (10% – 90%) t
R
12 ns
I
F
= 2.2 mA, V
I
= 5 V, R
T
=1.5 k, C
L
= 15 pF, R
L
= 560
10 ns
I
F
= 2.2 mA, V
I
= 3.3 V, R
T
= 700 , C
L
= 15 pF, R
L
=560
Output Fall Time (90% - 10%) t
F
12 ns
I
F
= 2.2 mA, V
I
= 5 V, R
T
= 1.5 k, C
L
= 15 pF, R
L
= 560
10 ns
I
F
= 2.2 mA, V
I
= 3.3 V, R
T
= 700 , C
L
= 15 pF, R
L
= 560
Static Common Mode Transient
Immunity at Logic High Output
[4]
|CM
H
| 20 35
kV/µs V
CM
= 1000 V, T
A
= 25 °C, I
F
= 0 mA, C
L
= 15 pF,
R
L
= 560 Ω, Figure 8
Static Common Mode Transient
Immunity at Logic Low Output
[5
]
|CM
L
| 20 35
kV/µs V
CM
= 1000 V, T
A
= 25 °C, V
I
= 5 V (R
T
= 1.5 k) or V
I
=
3.3 V (R
T
= 700 ), I
F
= 2.2 mA, C
L
= 15 pF,
R
L
= 560 Ω, Figure 8
Dynamic Common Mode Transient
Immunity
[6]
CMR
D
35
kV/µs V
CM
= 1000 V, T
A
= 25 °C, I
F
= 2.2 mA, V
I
= 5 V (R
T
= 1.5
k) or V
I
= 3.3 V (R
T
=700 ), 10 MBd data rate, the
absolute increase of PWD <10 ns, R
L
= 560
6
0.01
0.1
1
10
1.1 1.2 1.3 1.4 1.5
V
F
- Forward Voltage - V
I
F
- Forward Current - mA
T
A
=25 °C
I
F
V
F
1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
-40 -20 0 20 40 60 80 100
T
A
-Tem perature - °C
V
F
- Forward Voltage - V
0
0.2
0.4
0.6
0.8
1
-40 -20 0 20 40 60 80 100 120
I
tc
- Input Threshold Current - A
I
TH
_3.3V
I
TH
_5.0V
T
A
-Tem perature - °C
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
-40 0 40 80 120
I
DDL
3.3 V
5 V
T
A
-Tem perature - °C
- Logic Low Output Supply Current - mA
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
-40 0 40 80 120
3.3 V
5 V
I
DDH
- Logic High Output Supply Current - mA
T
A
-Tem perature - °C
Figure 1. Typical input diode forward characteristic Figure 2. Typical V
F
vs. temperature
Figure 3. Typical input threshold current I
TH
vs. temperature Figure 4. Typical logic low output supply current I
DDL
vs. temperature
Figure 5. Typical logic high output supply current I
DDH
vs. temperature

ACPL-M62L-500E

Mfr. #:
Manufacturer:
Broadcom / Avago
Description:
High Speed Optocouplers OPTOCOUPLER(3.3V,5V) LF+T/R
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union