AD9750
–15–
REV. 0
AD9750
IOUTA
IOUTB
C
OPT
200V
U1
V
OUT
= I
OUTFS
3 R
FB
I
OUTFS
= 10mA
R
FB
200V
Figure 32. Unipolar Buffered Voltage Output
POWER AND GROUNDING CONSIDERATIONS, POWER
SUPPLY REJECTION
Many applications seek high speed and high performance under
less than ideal operating conditions. In these circuits, the imple-
mentation and construction of the printed circuit board design
are as important as the circuit design. To ensure optimum per-
formance, proper RF techniques must be used for device selec-
tion, placement and routing as well as power supply bypassing
and grounding. Figures 39–44 illustrate the recommended
printed circuit board ground, power and signal plane layouts
which are implemented on the AD9750 evaluation board.
One factor that can measurably affect system performance is the
ability of the DAC output to reject dc variations or ac noise
superimposed on the analog or digital dc power distribution
(i.e., AVDD, DVDD). This is referred to as Power Supply
Rejection Ratio (PSRR). For dc variations of the power supply,
the resulting performance of the DAC directly corresponds to a
gain error associated with the DAC’s full-scale current, I
OUTFS
.
AC noise on the dc supplies is common in applications where
the power distribution is generated by a switching power supply.
Typically, switching power supply noise will occur over the
spectrum from tens of kHz to several MHz. PSRR vs. frequency
of the AD9750 AVDD supply, over this frequency range, is
given in Figure 33.
FREQUENCY – MHz
90
80
60
0.26 0.5
PSRR – dB
0.75 1.0
70
Figure 33. Power Supply Rejection Ratio of AD9750
Note that the units in Figure 33 are given in units of (amps out)/
(volts in). Noise on the analog power supply has the effect of
modulating the internal switches, and therefore the output
current. The voltage noise on the dc power will be added in a
nonlinear manner to the desired I
OUT
. Due to the relatively
different sizes of these switches, PSRR is very code-dependent.
This can produce a mixing effect which can modulate low fre-
quency power supply noise to higher frequencies. Worst case
PSRR for either one of the differential DAC outputs will occur
when the full-scale current is directed towards that output. As a
result, the PSRR measurement in Figure 33 represents a worst
case condition in which the digital inputs remain static and the
full-scale output current of 20 mA is directed to the DAC out-
put being measured.
An example serves to illustrate the effect of supply noise on the
analog supply. Suppose a switching regulator with a switching
frequency of 250 kHz produces 10 mV rms of noise and, for
simplicity sake (i.e., ignore harmonics), all of this noise is con-
centrated at 250 kHz. To calculate how much of this undesired
noise will appear as current noise superimposed on the DAC’s
full-scale current, I
OUTFS
, one must determine the PSRR in dB
using Figure 33 at 250 kHz. To calculate the PSRR for a given
R
LOAD
, such that the units of PSRR are converted from A/V to
V/V, adjust the curve in Figure 33 by the scaling factor 20 ×
Log (R
LOAD
). For instance, if R
LOAD
is 50 , the PSRR is re-
duced by 34 dB (i.e., PSRR of the DAC at 1 MHz, which is
74 dB in Figure 33 becomes 40 dB V
OUT
/V
IN
).
Proper grounding and decoupling should be a primary objective
in any high speed, high resolution system. The AD9750 fea-
tures separate analog and digital supply and ground pins to
optimize the management of analog and digital ground currents
in a system. In general, AVDD, the analog supply, should be
decoupled to ACOM, the analog common, as close to the chip
as physically possible. Similarly, DVDD, the digital supply,
should be decoupled to DCOM as close as physically as possible.
For those applications that require a single +5 V or +3 V supply
for both the analog and digital supply, a clean analog supply
may be generated using the circuit shown in Figure 34. The
circuit consists of a differential LC filter with separate power
supply and return lines. Lower noise can be attained using low
ESR type electrolytic and tantalum capacitors.
100mF
ELECT.
10-22mF
TANT.
0.1mF
CER.
TTL/CMOS
LOGIC
CIRCUITS
+5V OR +3V
POWER SUPPLY
FERRITE
BEADS
AVDD
ACOM
Figure 34. Differential LC Filter for Single +5 V or +3 V
Applications
Maintaining low noise on power supplies and ground is critical
to obtaining optimum results from the AD9750. If properly
implemented, ground planes can perform a host of functions on
high speed circuit boards: bypassing, shielding, current trans-
port, etc. In mixed signal design, the analog and digital portions
of the board should be distinct from each other, with the analog
ground plane confined to the areas covering the analog signal
traces, and the digital ground plane confined to areas covering
the digital interconnects.
AD9750
–16–
REV. 0
All analog ground pins of the DAC, reference and other analog
components should be tied directly to the analog ground plane.
The two ground planes should be connected by a path 1/8
to 1/4 inch wide underneath or within 1/2 inch of the DAC to
maintain optimum performance. Care should be taken to ensure
that the ground plane is uninterrupted over crucial signal paths.
On the digital side, this includes the digital input lines running
to the DAC as well as any clock signals. On the analog side, this
includes the DAC output signal, reference signal and the supply
feeders.
The use of wide runs or planes in the routing of power lines is
also recommended. This serves the dual role of providing a low
series impedance power supply to the part, as well as providing
some “free” capacitive decoupling to the appropriate ground
plane. It is essential that care be taken in the layout of signal and
power ground interconnects to avoid inducing extraneous volt-
age drops in the signal ground paths. It is recommended that all
connections be short, direct and as physically close to the pack-
age as possible in order to minimize the sharing of conduction
paths between different currents. When runs exceed an inch in
length, strip line techniques with proper termination resistor
should be considered. The necessity and value of this resistor
will be dependent upon the logic family used.
For a more detailed discussion of the implementation and
construction of high speed, mixed signal printed circuit boards,
refer to Analog Devices’ application notes AN-280 and
AN-333.
APPLICATIONS
Using the AD9750 for Quadrature Amplitude Modulation
(QAM)
QAM is one of the most widely used digital modulation schemes in
digital communication systems. This modulation technique can
be found in FDM as well as spreadspectrum (i.e., CDMA)
based systems. A QAM signal is a carrier frequency that is
modulated in both amplitude (i.e., AM modulation) and phase
(i.e., PM modulation). It can be generated by independently
modulating two carriers of identical frequency but with a 90°
phase difference. This results in an in-phase (I) carrier compo-
nent and a quadrature (Q) carrier component at a 90° phase
shift with respect to the I component. The I and Q components
are then summed to provide a QAM signal at the specified
carrier frequency.
A common and traditional implementation of a QAM modu-
lator is shown in Figure 35. The modulation is performed in the
analog domain in which two DACs are used to generate the
baseband I and Q components, respectively. Each component is
then typically applied to a Nyquist filter before being applied to
a quadrature mixer. The matching Nyquist filters shape and
limit each component’s spectral envelope while minimizing
intersymbol interference. The DAC is typically updated at the
QAM symbol rate or possibly a multiple of it if an interpolating
filter precedes the DAC. The use of an interpolating filter typi-
cally eases the implementation and complexity of the analog
filter, which can be a significant contributor to mismatches in
gain and phase between the two baseband channels. A quadra-
ture mixer modulates the I and Q components with in-phase
and quadrature phase carrier frequency and then sums the two
outputs to provide the QAM signal.
AD9750
0
90
AD9750
CARRIER
FREQUENCY
12
12
TO
MIXER
DSP
OR
ASIC
NYQUIST
FILTERS
QUADRATURE
MODULATOR
S
Figure 35. Typical Analog QAM Architecture
In this implementation, it is much more difficult to maintain
proper gain and phase matching between the I and Q channels.
The circuit implementation shown in Figure 36 helps improve
upon the matching and temperature stability characteristics
between the I and Q channels, as well as showing a path for up-
conversion using the AD8346 quadrature modulator. Using a
single voltage reference derived from U1 to set the gain for both
the I and Q channels will improve the gain matching and stabil-
ity. R
CAL
can be used to compensate for any mismatch in gain
between the two channels. This mismatch may be attributed to
the mismatch between R
SET1
and R
SET2
, effective load resistance
of each channel, and/or the voltage offset of the control ampli-
fier in each DAC. The differential voltage outputs of U1 and
U2 are fed into the respective differential inputs of the AD8346
via matching networks.
AD9750
–17–
REV. 0
It is also possible to generate a QAM signal completely in the
digital domain via a DSP or ASIC, in which case only a single
DAC of sufficient resolution and performance is required to
reconstruct the QAM signal. Also available from several vendors
are Digital ASICs which implement other digital modulation
schemes such as PSK and FSK. This digital implementation has
the benefit of generating perfectly matched I and Q components
in terms of gain and phase, which is essential in maintaining
optimum performance in a communication system. In this imple-
mentation, the reconstruction DAC must be operating at a
sufficiently high clock rate to accommodate the highest specified
QAM carrier frequency. Figure 37 shows a block diagram of
such an implementation using the AD9750.
50V
AD9750
LPF
50V
TO
MIXER
12
COS
12
SIN
12
12
I DATA
Q DATA
12
CARRIER
FREQUENCY
12
STEL-1177
NCO
CLOCK
STEL-1130
QAM
Figure 37. Digital QAM Architecture
AD9750 EVALUATION BOARD
General Description
The AD9750-EB is an evaluation board for the AD9750 10-bit
D/A converter. Careful attention to layout and circuit design
combined with a prototyping area allow the user to easily and
effectively evaluate the AD9750 in any application where high
resolution, high speed conversion is required.
This board allows the user the flexibility to operate the AD9750 in
various configurations. Possible output configurations include
transformer coupled, resistor terminated, inverting/noninverting
and differential amplifier outputs. The digital inputs are designed
to be driven directly from various word generators, with the
on-board option to add a resistor network for proper load ter-
mination. Provisions are also made to operate the AD9750
with either the internal or external reference, or to exercise the
power-down feature.
Refer to the application note AN-420 for a thorough description
and operating instructions for the AD9750 evaluation board.
AD9750
(“I DAC”)
AD9750
(“Q DAC”)
IOUTA
IOUTB
QOUTA
QOUTB
DCOM
FSADJ
REFIO
SLEEP
R
SET2
1.9kV
0.1mF
CLK
Q DATA
INPUT
I DATA
INPUT
DVDD
AVDD
100W
500V
100V
C
FILTER
100V
C
FILTER
100V
500V
500V
500V500V
500V
500V
634V
0.1mF
+5V
VPBF
BBIP
BBIN
BBQP
BBQN
AD8346
PHASE
SPLITTER
LOIP
LOIN
VOUT
500mV p-p WITH
V
CM
=1.2V
NOTE: 500V RESISTOR NETWORK - OHMTEK ORN5000D
100V RESISTOR NETWORK - TOMC1603-100D
REFLO
ACOM
REFLO
AVDD
REFIO
FSADJ
R
SET1
2kV
R
CAL
220V
U1
U2
AVDD
1.82V
LATCHES
500V
DAC
DAC
+
LATCHES
Figure 36. Baseband QAM Implementation Using Two AD9750s

AD9750ARUZRL7

Mfr. #:
Manufacturer:
Description:
Digital to Analog Converters - DAC 10-Bit 100 MSPS
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union

Products related to this Datasheet