13
LTC1628/LTC1628-PG
1628fb
the RMS input current varies for single-phase and 2-phase
operation for 3.3V and 5V regulators over a wide input
voltage range.
It can readily be seen that the advantages of 2-phase
operation are not just limited to a narrow operating range,
but in fact extend over a wide region. A good rule of thumb
for most applications is that 2-phase operation will reduce
Figure 4. RMS Input Current Comparison
Figure 1 on the first page is a basic LTC1628 application
circuit. External component selection is driven by the
load requirement, and begins with the selection of R
SENSE
and the inductor value. Next, the power MOSFETs and D1
are selected. Finally, C
IN
and C
OUT
are selected. The
circuit shown in Figure 1 can be configured for operation
up to an input voltage of 28V (limited by the external
MOSFETs).
R
SENSE
Selection For Output Current
R
SENSE
is chosen based on the required output current.
The LTC1628 current comparator has a maximum thresh-
old of 75mV/R
SENSE
and an input common mode range of
SGND to 1.1(INTV
CC
). The current comparator threshold
sets the peak of the inductor current, yielding a maximum
average output current I
MAX
equal to the peak value less
half the peak-to-peak ripple current, I
L
.
Allowing a margin for variations in the LTC1628 and
external component values yields:
R
mV
I
SENSE
MAX
=
50
When using the controller in very low dropout conditions,
the maximum output current level will be reduced due to
the internal compensation required to meet stability crite-
rion for buck regulators operating at greater than 50%
duty factor. A curve is provided to estimate this reducton
in peak output current level depending upon the operating
duty factor.
Selection of Operating Frequency
The LTC1628 uses a constant frequency architecture with
the frequency determined by an internal oscillator capaci-
tor. This internal capacitor is charged by a fixed current
plus an additional current that is proportional to the
voltage applied to the FREQSET pin.
A graph for the voltage applied to the FREQSET pin vs
frequency is given in Figure 5. As the operating frequency
INPUT VOLTAGE (V)
0
INPUT RMS CURRENT (A)
3.0
2.5
2.0
1.5
1.0
0.5
0
10 20 30 40
1628 F04
SINGLE PHASE
DUAL CONTROLLER
2-PHASE
DUAL CONTROLLER
V
O1
= 5V/3A
V
O2
= 3.3V/3A
the input capacitor requirement to that for just one channel
operating at maximum current and 50% duty cycle.
A final question: If 2-phase operation offers such an
advantage over single-phase operation for dual switching
regulators, why hasn’t it been done before? The answer is
that, while simple in concept, it is hard to implement.
Constant-frequency current mode switching regulators
require an oscillator derived “slope compensation” signal
to allow stable operation of each regulator at over 50%
duty cycle. This signal is relatively easy to derive in single-
phase dual switching regulators, but required the develop-
ment of a new and proprietary technique to allow 2-phase
operation. In addition, isolation between the two channels
becomes more critical with 2-phase operation because
switch transitions in one channel could potentially disrupt
the operation of the other channel.
The LTC1628 is proof that these hurdles have been sur-
mounted. The new device offers unique advantages for the
ever-expanding number of high efficiency power supplies
required in portable electronics.
(Refer to Functional Diagram)
OPERATIO
U
APPLICATIO S I FOR ATIO
WUUU
14
LTC1628/LTC1628-PG
1628fb
is increased the gate charge losses will be higher, reducing
efficiency (see Efficiency Considerations). The maximum
switching frequency is approximately 310kHz.
Inductor Value Calculation
The operating frequency and inductor selection are inter-
related in that higher operating frequencies allow the use
of smaller inductor and capacitor values. So why would
anyone ever choose to operate at lower frequencies with
larger components? The answer is efficiency. A higher
frequency generally results in lower efficiency because of
MOSFET gate charge losses. In addition to this basic
trade-off, the effect of inductor value on ripple current and
low current operation must also be considered.
The inductor value has a direct effect on ripple current. The
inductor ripple current I
L
decreases with higher induc-
tance or frequency and increases with higher V
IN
:
I
fL
V
V
V
L OUT
OUT
IN
=
1
1
()()
Accepting larger values of I
L
allows the use of low
inductances, but results in higher output voltage ripple
and greater core losses. A reasonable starting point for
setting ripple current is I
L
=0.3(I
MAX
). Remember, the
maximum I
L
occurs at the maximum input voltage.
The inductor value also has secondary effects. The transi-
tion to Burst Mode operation begins when the average
inductor current required results in a peak current below
25% of the current limit determined by R
SENSE
. Lower
inductor values (higher I
L
) will cause this to occur at
lower load currents, which can cause a dip in efficiency in
the upper range of low current operation. In Burst Mode
operation, lower inductance values will cause the burst
frequency to decrease.
Inductor Core Selection
Once the value for L is known, the type of inductor must
be selected. High efficiency converters generally cannot
afford the core loss found in low cost powdered iron
cores, forcing the use of more expensive ferrite,
molypermalloy, or Kool Mµ
®
cores. Actual core loss is
independent of core size for a fixed inductor value, but it
is very dependent on inductance selected. As inductance
increases, core losses go down. Unfortunately, increased
inductance requires more turns of wire and therefore
copper losses will increase.
Ferrite designs have very low core loss and are preferred
at high switching frequencies, so design goals can con-
centrate on copper loss and preventing saturation. Ferrite
core material saturates “hard,” which means that induc-
tance collapses abruptly when the peak design current is
exceeded. This results in an abrupt increase in inductor
ripple current and consequent output voltage ripple. Do
not allow the core to saturate!
Molypermalloy (from Magnetics, Inc.) is a very good, low
loss core material for toroids, but it is more expensive than
ferrite. A reasonable compromise from the same manu-
facturer is Kool Mµ. Toroids are very space efficient,
especially when you can use several layers of wire. Be-
cause they generally lack a bobbin, mounting is more
difficult. However, designs for surface mount are available
that do not increase the height significantly.
Power MOSFET and D1 Selection
Two external power MOSFETs must be selected for each
controller with the LTC1628: One N-channel MOSFET for
the top (main) switch, and one N-channel MOSFET for the
bottom (synchronous) switch.
The peak-to-peak drive levels are set by the INTV
CC
voltage. This voltage is typically 5V during start-up (see
Kool Mµ is a registered trademark of Magnetics, Inc.
Figure 5. FREQSET Pin Voltage vs Frequency
OPERATING FREQUENCY (kHz)
120 170 220 270 320
FREQSET PIN VOLTAGE (V)
1628 F05
2.5
2.0
1.5
1.0
0.5
0
APPLICATIO S I FOR ATIO
WUUU
15
LTC1628/LTC1628-PG
1628fb
EXTV
CC
Pin Connection). Consequently, logic-level
threshold MOSFETs must be used in most applications.
The only exception is if low input voltage is expected
(V
IN
< 5V); then, sub-logic level threshold MOSFETs
(V
GS(TH)
< 3V) should be used. Pay close attention to the
BV
DSS
specification for the MOSFETs as well; most of the
logic level MOSFETs are limited to 30V or less.
Selection criteria for the power MOSFETs include the “ON”
resistance R
DS(ON)
, reverse transfer capacitance C
RSS
,
input voltage and maximum output current. When the
LTC1628 is operating in continuous mode the duty cycles
for the top and bottom MOSFETs are given by:
Main SwitchDuty Cycle
V
V
OUT
IN
=
Synchronous SwitchDuty Cycle
VV
V
IN OUT
IN
=
The MOSFET power dissipations at maximum output
current are given by:
P
V
V
IR
kV I C f
MAIN
OUT
IN
MAX DS ON
IN MAX RSS
=
()
+
()
+
()( )( )()
2
2
1
δ
()
P
VV
V
IR
SYNC
IN OUT
IN
MAX DS ON
=
()
+
()
()
2
1
δ
where δ is the temperature dependency of R
DS(ON)
and k
is a constant inversely related to the gate drive current.
Both MOSFETs have I
2
R losses while the topside N-channel
equation includes an additional term for transition losses,
which are highest at high input voltages. For V
IN
< 20V the
high current efficiency generally improves with larger
MOSFETs, while for V
IN
> 20V the transition losses rapidly
increase to the point that the use of a higher R
DS(ON)
device
with lower C
RSS
actually provides higher efficiency. The
synchronous MOSFET losses are greatest at high input
voltage when the top switch duty factor is low or during a
short-circuit when the synchronous switch is on close to
100% of the period.
The term (1+δ) is generally given for a MOSFET in the form
of a normalized R
DS(ON)
vs Temperature curve, but
δ = 0.005/°C can be used as an approximation for low
voltage MOSFETs. C
RSS
is usually specified in the MOS-
FET characteristics. The constant k = 1.7 can be used to
estimate the contributions of the two terms in the main
switch dissipation equation.
The Schottky diode D1 shown in Figure 1 conducts during
the dead-time between the conduction of the two power
MOSFETs. This prevents the body diode of the bottom
MOSFET from turning on, storing charge during the dead-
time and requiring a reverse recovery period that could
cost as much as 3% in efficiency at high V
IN
. A 1A to 3A
Schottky is generally a good compromise for both regions
of operation due to the relatively small average current.
Larger diodes result in additional transition losses due to
their larger junction capacitance.
C
IN
and C
OUT
Selection
The selection of C
IN
is simplified by the multiphase archi-
tecture and its impact on the worst-case RMS current
drawn through the input network (battery/fuse/capacitor).
It can be shown that the worst case RMS current occurs
when only one controller is operating. The controller with
the highest (V
OUT
)(I
OUT
) product needs to be used in the
formula below to determine the maximum RMS current
requirement. Increasing the output current, drawn from
the other out-of-phase controller, will actually decrease
the input RMS ripple current from this maximum value
(see Figure 4). The out-of-phase technique typically re-
duces the input capacitor’s RMS ripple current by a factor
of 30% to 70% when compared to a single phase power
supply solution.
The type of input capacitor, value and ESR rating have
efficiency effects that need to be considered in the selec-
tion process. The capacitance value chosen should be
sufficient to store adequate charge to keep high peak
battery currents down. 20µF to 40µF is usually sufficient
for a 25W output supply operating at 200kHz. The ESR of
the capacitor is important for capacitor power dissipation
as well as overall battery efficiency. All of the power (RMS
ripple current • ESR) not only heats up the capacitor but
wastes power from the battery.
APPLICATIO S I FOR ATIO
WUUU

LTC1628IG-PG#PBF

Mfr. #:
Manufacturer:
Analog Devices / Linear Technology
Description:
Switching Voltage Regulators Dual 2-phase Step-dn + Pgood
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union