MT4JSF12864HZ-1G6D1

Functional Block Diagram
Figure 2: Functional Block Diagram
DQS#
DQS
DM
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQS#
DQS
DM
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
ZQ
DQ0
DQ1
DQ2
DQ3
DQ4
DQ5
DQ6
DQ7
DQ8
DQ9
DQ10
DQ11
DQ12
DQ13
DQ14
DQ15
DQ32
DQ33
DQ34
DQ35
DQ36
DQ37
DQ38
DQ39
DQ40
DQ41
DQ42
DQ43
DQ44
DQ45
DQ46
DQ47
DQ16
DQ17
DQ18
DQ19
DQ20
DQ21
DQ22
DQ23
DQ24
DQ25
DQ26
DQ27
DQ28
DQ29
DQ30
DQ31
DQ48
DQ49
DQ50
DQ51
DQ52
DQ53
DQ54
DQ55
DQ56
DQ57
DQ58
DQ59
DQ60
DQ61
DQ62
DQ63
DQS1#
DQS1
DM1
DQS2#
DQS2
DM2
DQS3#
DQS3
DM3
DQS4#
DQS4
DM4
DQS5#
DQS5
DM5
DQS6#
DQS6
DM6
DQS7#
DQS7
DM7
CS#
CS#
CS#
CS#
U1
U2
U3
U4
S0#
DQS#
DQS
DM
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQS#
DQS
DM
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
ZQ
DQS#
DQS
DM
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQS#
DQS
DM
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
ZQ
DQS#
DQS
DM
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQS#
DQS
DM
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
ZQ
BA[2:0]
A[13:0]
RAS#
CAS#
WE#
CKE0
ODT0
RESET#
BA[2:0]: DDR3 SDRAM
A[13:0]: DDR3 SDRAM
RAS#: DDR3 SDRAM
CAS#: DDR3 SDRAM
WE#: DDR3 SDRAM
CKE0: DDR3 SDRAM
ODT0: DDR3 SDRAM
RESET#: DDR3 SDRAM
DDR3 SDRAM x4
CK0
CK0#
CK1
CK1#
V
REFCA
V
SS
DDR3 SDRAM
DDR3 SDRAM
V
DD
Control, command, and
address termination
V
DDSPD
V
TT
DDR3 SDRAM
DDR3 SDRAM
V
REFDQ
Clock, control, command, and address line terminations:
DQS0#
DQS0
DM0
U5
V
SS
V
SS
V
SS
V
SS
A0
Temperature sensor/
SPD EEPROM
A1 A2
SA0 SA1
SDA
SCL
EVT
EVENT#
V
SS
CKE0, A[13:0],
RAS#, CAS#, WE#,
ODT0, BA[2:0], S0#
DDR3
SDRAM
V
TT
CK
CK#
DDR3
SDRAM
V
DD
Temperature sensor/
SPD EEPROM
Note:
1. The ZQ ball on each DDR3 component is connected to an external 240Ω ±1% resistor
that is tied to ground. It is used for the calibration of the component’s ODT and output
driver.
1GB (x64, SR) 204-Pin DDR3 SODIMM
Functional Block Diagram
PDF: 09005aef83b05507
jsf4c128x64hz.pdf - Rev. F 05/13
7
Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2009 Micron Technology, Inc. All rights reserved.
General Description
DDR3 SDRAM modules are high-speed, CMOS dynamic random access memory mod-
ules that use internally configured 8-bank DDR3 SDRAM devices. DDR3 SDRAM mod-
ules use DDR architecture to achieve high-speed operation. DDR3 architecture is essen-
tially an 8n-prefetch architecture with an interface designed to transfer two data words
per clock cycle at the I/O pins. A single read or write access for the DDR3 SDRAM mod-
ule effectively consists of a single 8n-bit-wide, one-clock-cycle data transfer at the inter-
nal DRAM core and eight corresponding n-bit-wide, one-half-clock-cycle data transfers
at the I/O pins.
DDR3 modules use two sets of differential signals: DQS, DQS# to capture data and CK
and CK# to capture commands, addresses, and control signals. Differential clocks and
data strobes ensure exceptional noise immunity for these signals and provide precise
crossing points to capture input signals.
Fly-By Topology
DDR3 modules use faster clock speeds than earlier DDR technologies, making signal
quality more important than ever. For improved signal quality, the clock, control, com-
mand, and address buses have been routed in a fly-by topology, where each clock, con-
trol, command, and address pin on each DRAM is connected to a single trace and ter-
minated (rather than a tree structure, where the termination is off the module near the
connector). Inherent to fly-by topology, the timing skew between the clock and DQS sig-
nals can be easily accounted for by using the write-leveling feature of DDR3.
Temperature Sensor with Serial Presence-Detect EEPROM
Thermal Sensor Operations
The temperature from the integrated thermal sensor is monitored and converts into a
digital word via the I
2
C bus. System designers can use the user-programmable registers
to create a custom temperature-sensing solution based on system requirements. Pro-
gramming and configuration details comply with JEDEC standard No. 21-C page 4.7-1,
"Definition of the TSE2002av, Serial Presence Detect with Temperature Sensor."
Serial Presence-Detect EEPROM Operation
DDR3 SDRAM modules incorporate serial presence-detect. The SPD data is stored in a
256-byte EEPROM. The first 128 bytes are programmed by Micron to comply with JE-
DEC standard JC-45, "Appendix X: Serial Presence Detect (SPD) for DDR3 SDRAM Mod-
ules." These bytes identify module-specific timing parameters, configuration informa-
tion, and physical attributes. The remaining 128 bytes of storage are available for use by
the customer. System READ/WRITE operations between the master (system logic) and
the slave EEPROM device occur via a standard I
2
C bus using the DIMM’s SCL (clock)
SDA (data), and SA (address) pins. Write protect (WP) is connected to V
SS
, permanently
disabling hardware write protection. For further information refer to Micron technical
note TN-04-42, "Memory Module Serial Presence-Detect."
1GB (x64, SR) 204-Pin DDR3 SODIMM
General Description
PDF: 09005aef83b05507
jsf4c128x64hz.pdf - Rev. F 05/13
8
Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2009 Micron Technology, Inc. All rights reserved.
Electrical Specifications
Stresses greater than those listed may cause permanent damage to the module. This is a
stress rating only, and functional operation of the module at these or any other condi-
tions outside those indicated in each device's data sheet is not implied. Exposure to ab-
solute maximum rating conditions for extended periods may adversely affect reliability.
Table 7: Absolute Maximum Ratings
Symbol Parameter Min Max Units
V
DD
V
DD
supply voltage relative to V
SS
–0.4 1.975 V
V
IN
, V
OUT
Voltage on any pin relative to V
SS
–0.4 1.975 V
Table 8: Operating Conditions
Symbol Parameter Min Nom Max Units Notes
V
DD
V
DD
supply voltage 1.425 1.5 1.575 V
V
REFCA(DC)
Input reference voltage command/address
bus
0.49 x V
DD
0.5 x V
DD
0.51 x V
DD
V
V
REFDQ(DC)
I/O reference voltage DQ bus 0.49 x V
DD
0.5 x V
DD
0.51 x V
DD
V
I
VTT
Termination reference current from V
TT
–600 +600 mA
V
TT
Termination reference voltage (DC) –
command/address bus
0.49 × V
DD
-
20mV
0.5 × V
DD
0.51 × V
DD
+
20mV
V 1
I
I
Input leakage current;
Any input 0V V
IN
V
DD
;
V
REF
input 0V V
IN
0.95V
(All other pins not under test
= 0V)
Address inputs,
RAS#, CAS#,
WE#, S#, CKE,
ODT, BA, CK,
CK#
–8 0 8 µA
DM –2 0 2
I
OZ
Output leakage current;
0V V
OUT
V
DDQ
;
DQ and ODT are disabled;
ODT is HIGH
DQ, DQS, DQS# –5 0 5 µA
I
VREF
V
REF
supply leakage current; V
REFDQ
= V
DD
/2
or V
REFCA
= V
DD
/2 (All other pins not under
test = 0V)
–4 0 4 µA
T
A
Module ambient operating
temperature
Commercial 0 70 °C 2, 3
T
C
DDR3 SDRAM component
case operating temperature
Commercial 0 85 °C 2, 3, 4
Notes:
1. V
TT
termination voltage in excess of the stated limit will adversely affect the command
and address signals’ voltage margin and will reduce timing margins.
2. T
A
and T
C
are simultaneous requirements.
3. For further information, refer to technical note TN-00-08: “Thermal Applications,” avail-
able on Micron’s Web site.
4. The refresh rate is required to double when 85°C < T
C
95°C.
1GB (x64, SR) 204-Pin DDR3 SODIMM
Electrical Specifications
PDF: 09005aef83b05507
jsf4c128x64hz.pdf - Rev. F 05/13
9
Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2009 Micron Technology, Inc. All rights reserved.

MT4JSF12864HZ-1G6D1

Mfr. #:
Manufacturer:
Micron
Description:
MODULE DDR3 SDRAM 1GB 204SODIMM
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union