AD73311
–12–
REV. B
FUNCTIONAL DESCRIPTION
Encoder Channel
The encoder channel consists of a switched capacitor PGA and
a sigma-delta analog-to-digital converter (ADC). An on-board
digital filter, which forms part of the sigma-delta ADC, also
performs critical system-level filtering. Due to the high level of
oversampling, the input antialias requirements are reduced such
that a simple single pole RC stage is sufficient to give adequate
attenuation in the band of interest.
Programmable Gain Amplifier
The encoder sections analog front end comprises a switched
capacitor PGA which also forms part of the sigma-delta modula-
tor. The SC sampling frequency is DMCLK/8. The PGA,
whose programmable gain settings are shown in Table IV, may
be used to increase the signal level applied to the ADC from low
output sources such as microphones, and can be used to avoid
placing external amplifiers in the circuit. The input signal level
to the sigma-delta modulator should not exceed the maximum
input voltage permitted.
The PGA gain is set by bits IGS0, IGS1 and IGS2 (CRD:02)
in control register D.
Table IV. PGA Settings for the Encoder Channel
IGS2 IGS1 IGS0 Gain (dB)
00 00
00 16
01 012
01 118
10 020
10 126
11 032
11 138
ADC
The ADC consists of an analog sigma-delta modulator and a
digital antialiasing decimation filter. The sigma-delta modu-
lator noise-shapes the signal and produces 1-bit samples at a
DMCLK/8 rate. This bit-stream, representing the analog input
signal, is input to the antialiasing decimation filter. The decimation
filter reduces the sample rate and increases the resolution.
Analog Sigma-Delta Modulator
The AD73311 input channel employs a sigma-delta conversion
technique, which provides a high resolution 16-bit output with
system filtering being implemented on-chip.
Sigma-delta converters employ a technique known as oversampling
where the sampling rate is many times the highest frequency of
interest. In the case of the AD73311, the initial sampling rate of
the sigma-delta modulator is DMCLK/8. The main effect of
oversampling is that the quantization noise is spread over a very
wide bandwidth, up to F
S
/2 = DMCLK/16 (Figure 6a). This
means that the noise in the band of interest is much reduced.
Another complementary feature of sigma-delta converters is
the use of a technique called noise-shaping. This technique has
the effect of pushing the noise from the band of interest to an
out-of-band position (Figure 6b). The combination of these
techniques, followed by the application of a digital filter, reduces
the noise in band sufficiently to ensure good dynamic perfor-
mance from the part (Figure 6c).
BAND
OF
INTEREST
F
S
/2
DMCLK/16
BAND
OF
INTEREST
NOISE SHAPING
F
S
/2
DMCLK/16
BAND
OF
INTEREST
F
S
/2
DMCLK/16
DIGITAL FILTER
a.
b.
c.
Figure 6. Sigma-Delta Noise Reduction
Figure 7 shows the various stages of filtering that are employed
in a typical AD73311 application. In Figure 7a we see the trans-
fer function of the external analog antialias filter. Even though it
is a single RC pole, its cutoff frequency is sufficiently far away
from the initial sampling frequency (DMCLK/8) that it takes care
of any signals that could be aliased by the sampling frequency.
This also shows the major difference between the initial over-
sampling rate and the bandwidth of interest. In Figure 7b, the
signal and noise shaping responses of the sigma-delta modulator
are shown. The signal response provides further rejection of any
high frequency signals while the noise shaping will push the
inherent quantization noise to an out-of-band position. The
detail of Figure 7c shows the response of the digital decimation
filter (Sinc-cubed response) with nulls every multiple of DMCLK/
256, which is the decimation filter update rate. The final detail
in Figure 7d shows the application of a final antialias filter in the
DSP engine. This has the advantage of being implemented
according to the users requirements and available MIPS. The
filtering in Figures 7a through 7c is implemented in the AD73311.
AD73311
–13–
REV. B
F
B
= 4kHz FS
INIT
= DMCLK/8
F
B
= 4kHz
FS
INIT
= DMCLK/8
SIGNAL TRANSFER FUNCTION
NOISE TRANSFER FUNCTION
F
B
= 4kHz FS
INTER
= DMCLK/256
F
B
= 4kHz FS
FINAL
= 8kHz
FS
INTER
= DMCLK/256
a. Analog Antialias Filter Transfer Function
b. Analog Sigma-Delta Modulator Transfer Function
c. Digital Decimator Transfer Function
d. Final Filter LPF (HPF) Transfer Function
Figure 7. AD73311 ADC Frequency Responses
Decimation Filter
The digital filter used in the AD73311 carries out two important
functions. Firstly, it removes the out-of-band quantization noise,
which is shaped by the analog modulator and secondly, it
decimates the high frequency bit-stream to a lower rate 15-bit
word.
The antialiasing decimation filter is a sinc-cubed digital filter
that reduces the sampling rate from DMCLK/8 to DMCLK/
256, and increases the resolution from a single bit to 15 bits. Its
Z transform is given as: [(1Z
32
)/(1Z
1
)]
3
. This ensures a
minimal group delay of 25 µs.
ADC Coding
The ADC coding scheme is in twos complement format (see
Figure 8). The output words are formed by the decimation
filter, which grows the word length from the single-bit output of
the sigma-delta modulator to a 15-bit word, which is the final
output of the ADC block. In 16-bit Data Mode this value is left
shifted with the LSB being set to 0. For input values equal to or
greater than positive full scale, however, the output word is set
at 0x7FFF, which has the LSB set to 1. In mixed Control/Data
Mode, the resolution is fixed at 15 bits, with the MSB of the
16-bit transfer being used as a flag bit to indicate either control
or data in the frame.
V
INN
V
INP
V
REF
+ (V
REF
x 0.32875)
V
REF
V
REF
(V
REF
x 0.32875)
10...00 00...00 01...11
ADC CODE DIFFERENTIAL
V
INN
V
INP
V
REF
+ (V
REF
x 0.6575)
V
REF
V
REF
(V
REF
x 0.6575)
10...00 00...00 01...11
ADC CODE SINGLE ENDED
ANALOG
INPUT
ANALOG
INPUT
Figure 8. ADC Transfer Function
Decoder Channel
The decoder channel consists of a digital interpolator, digital
sigma-delta modulator, a single bit digital-to-analog converter
(DAC), an analog smoothing filter and a programmable gain
amplifier with differential output.
DAC Coding
The DAC coding scheme is in twos complement format with
0x7FFF being full-scale positive and 0x8000 being full-scale
negative.
Interpolation Filter
The anti-imaging interpolation filter is a sinc-cubed digital
filter which up-samples the 16-bit input words from a rate of
DMCLK/256 to a rate of DMCLK/8 while filtering to attenuate
images produced by the interpolation process. Its Z transform is
given as: [(1Z
32
)/(1Z
1
)]
3
. The DAC receives 16-bit samples
from the host DSP processor at a rate of DMCLK/256. If the
host processor fails to write a new value to the serial port, the
existing (previous) data is read again. The data stream is filtered
by the anti-imaging interpolation filter, but there is an option to
bypass the interpolator for the minimum group delay configura-
tion by setting the IBYP bit (CRE:5) of Control register E. The
interpolation filter has the same characteristics as the ADCs
antialiasing decimation filter.
The output of the interpolation filter is fed to the DACs digital
sigma-delta modulator, which converts the 16-bit data to 1-bit
samples at a rate of DMCLK/8. The modulator noise-shapes
the signal so that errors inherent to the process are minimized in
the passband of the converter. The bit-stream output of the
sigma-delta modulator is fed to the single bit DAC where it is
converted to an analog voltage.
AD73311
–14–
REV. B
Analog Smoothing Filter & PGA
The output of the single-bit DAC is sampled at DMCLK/8,
therefore it is necessary to filter the output to reconstruct the
low frequency signal. The decoders analog smoothing filter
consists of a continuous-time filter preceded by a third-order
switched-capacitor filter. The continuous-time filter forms part
of the output programmable gain amplifier (PGA). The PGA
can be used to adjust the output signal level from 15 dB to
+6 dB in 3 dB steps, as shown in Table V. The PGA gain is
set by bits OGS0, OGS1 and OGS2 (CRD:4-6) in Control
Register D.
Table V. PGA Settings for the Decoder Channel
OG2 OG1 OG0 Gain (dB)
00 0+6
00 1+3
01 00
01 13
10 06
10 19
11 012
11 115
Differential Output Amplifiers
The decoder has a differential analog output pair (VOUTP and
VOUTN). The output channel can be muted by setting the
MUTE bit (CRD:7) in Control Register D. The output signal is
dc-biased to the codecs on-chip voltage reference.
Voltage Reference
The AD73311 reference, REFCAP, is a bandgap reference that
provides a low noise, temperature-compensated reference to the
DAC and ADC. A buffered version of the reference is also made
available on the REFOUT pin and can be used to bias other
external analog circuitry. The reference has a default nominal
value of 1.2 V but can be set to a nominal value of 2.4 V by
setting the 5VEN bit (CRC:7) of CRC. The 5 V mode is gener-
ally only usable when V
DD
= 5 V.
The reference output (REFOUT) can be enabled for biasing
external circuitry by setting the RU bit (CRC:6) of CRC.
Serial Port (SPORT)
The codec communicates with a host processor via the bidirec-
tional synchronous serial port (SPORT) which is compatible
with most modern DSPs. The SPORT is used to transmit and
receive digital data and control information.
In both transmit and receive modes, data is transferred at the
serial clock (SCLK) rate with the MSB being transferred first.
Due to the fact that the SPORT uses a common serial register for
serial input and output, communications between an AD73311
codec and a host processor (DSP engine) must always be
initiated by the codec itself. This ensures that there is no danger
of the information being sent to the codec being corrupted by
ADC samples being output by the codec.
SPORT Overview
The AD73311 SPORT is a flexible, full-duplex, synchronous
serial port whose protocol has been designed to allow up to
eight AD73311 devices to be connected, in cascade, to a single
DSP via a six-wire interface. It has a very flexible architecture
that can be configured by programming two of the internal
control registers. The AD73311 SPORT has three distinct
modes of operation: Control Mode, Data Mode and Mixed
Control/Data Mode.
In Control Mode (CRA:0 = 0), the devices internal configura-
tion can be programmed by writing to the five internal control
registers. In this mode, control information can be written to or
read from the codec. In Data Mode (CRA:0 = 1), information
that is sent to the device is used to update the decoder section
(DAC), while the encoder section (ADC) data is read from the
device. In this mode, only DAC and ADC data is written to or
read from the device. Mixed mode (CRA:0 = 1 and CRA:1 = 1)
allows the user to choose whether the information being sent to
the device contains either control information or DAC data.
This is achieved by using the MSB of the 16-bit frame as a flag
bit. Mixed mode reduces the resolution to 15 bits with the MSB
being used to indicate whether the information in the 16-bit
frame is control information or DAC/ADC data.
The SPORT features a single 16-bit serial register that is used
for both input and output data transfers. As the input and out-
put data must share the same register there are some precautions
that must be observed. The primary precaution is that no infor-
mation must be written to the SPORT without reference to an
output sample event, which is when the serial register will be
overwritten with the latest ADC sample word. Once the SPORT
starts to output the latest ADC word then it is safe for the DSP
to write new control or data words to the codec. In certain con-
figurations, data can be written to the device to coincide with
the output sample being shifted out of the serial registersee
section on interfacing devices. The serial clock rate (CRB:23)
defines how many 16-bit words can be written to a device before
the next output sample event will happen.
The SPORT block diagram, shown in Figure 9, details the five
control registers (AE), external MCLK to internal DMCLK
divider and serial clock divider. The divider rates are controlled
by the setting of Control Register B. The AD73311 features a
master clock divider that allows users the flexibility of dividing
externally available high frequency DSP or CPU clocks to gen-
erate a lower frequency master clock internally in the codec
which may be more suitable for either serial transfer or sampling
rate requirements. The master clock divider has five divider
options (÷ 1 default condition, ÷ 2, ÷ 3, ÷ 4, ÷ 5) that are set by
loading the master clock divider field in Register B with the
appropriate code. Once the internal device master clock (DMCLK)
has been set using the master clock divider, the sample rate and
serial clock settings are derived from DMCLK.
The SPORT can work at four different serial clock (SCLK)
rates: chosen from DMCLK, DMCLK/2, DMCLK/4 or
DMCLK/8, where DMCLK is the internal or device master
clock resulting from the external or pin master clock being
divided by the master clock divider. When working at the lower
SCLK rate of DMCLK/8, which is intended for interfacing with
slower DSPs, the SPORT will support a maximum of two de-
vices in cascade with the sample rate of DMCLK/256.

AD73311LARSZ

Mfr. #:
Manufacturer:
Analog Devices Inc.
Description:
Analog Front End - AFE SGL-Ch 3-5V Front-End Processor
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union