LTM4623
19
4623fc
For more information www.linear.com/LTM4623
applicaTions inForMaTion
Table 3. 1.0V Output, No Heat Sink
DERATING CURVE V
IN
(V) POWER LOSS CURVE AIR FLOW (LFM) HEAT SINK θ
JA(°C/W)
Figures 12, 13, 14 5, 12, 16 Figure 8 0 None 25
Figures 12, 13, 14 5, 12, 16 Figure 8 200 None 22
Figures 12, 13, 14 5, 12, 16 Figure 8 400 None 22
Table 4. 1.5V Output, No Heat Sink
DERATING CURVE V
IN
(V) POWER LOSS CURVE AIR FLOW (LFM) HEAT SINK θ
JA(°C/W)
Figures 15, 16, 17 5, 12, 16 Figure 9 0 None 25
Figures 15, 16, 17 5, 12, 16 Figure 9 200 None 22
Figures 15, 16, 17 5, 12, 16 Figure 9 400 None 22
Figure 17. 16V to 1.5V Derating Curve,
No Heat Sink
Figure 18. 5V to 3.3V Derating Curve,
No Heat Sink
Figure 19. 12V to 3.3V Derating Curve,
No Heat Sink
Figure 21. 12V to 5V Derating Curve,
No Heat Sink
Figure 20. 16V to 3.3V Derating Curve,
No Heat Sink
Figure 22. 16V to 5V Derating Curve,
No Heat Sink
AMBIENT TEMPERATURE (°C)
30
3.5
3
2.5
2
1.5
1
0.5
0
80 120
4623 F17
40 60
100 130
90
50 70
110
DERATED LOAD CURRENT (A)
0LFM
200LFM
400LFM
AMBIENT TEMPERATURE (°C)
30
3.5
3
2.5
2
1.5
1
0.5
0
80 120
4623 F18
40 60
100 130
90
50 70
110
DERATED LOAD CURRENT (A)
0LFM
200LFM
400LFM
AMBIENT TEMPERATURE (°C)
30
3.5
3
2.5
2
1.5
1
0.5
0
80
4623 F25
40 60
100 120
90
50 70
110
DERATED LOAD CURRENT (A)
0LFM
200LFM
400LFM
AMBIENT TEMPERATURE (°C)
30
3.5
3
2.5
2
1.5
1
0.5
0
80
4623 F26
40 60
100 120
90
50 70
110
DERATED LOAD CURRENT (A)
0LFM
200LFM
400LFM
AMBIENT TEMPERATURE (°C)
30
3.5
3
2.5
2
1.5
1
0.5
0
80
4623 F27
40 60
100 120
90
50 70
110
DERATED LOAD CURRENT (A)
0LFM
200LFM
400LFM
AMBIENT TEMPERATURE (°C)
30
3.5
3
2.5
2
1.5
1
0.5
0
80
4623 F28
40 60
100 120
90
50 70
110
DERATED LOAD CURRENT (A)
0LFM
200LFM
400LFM
LTM4623
20
4623fc
For more information www.linear.com/LTM4623
applicaTions inForMaTion
Table 7. Output Voltage Response vs Component Matrix (Refer to Figure 24)
C
IN
PART NUMBER VALUE C
OUT1
PART NUMBER VALUE
Murata GRM21BR61E106KA73L 10µF, 25V, 0805, X5R Murata GRM21BR60J476ME15 47µF, 6.3V, 0805, X5R
Taiyo Yuden TMK212BBJ106KG-T 10µF, 25V, 0805, X5R Taiyo Yuden JMK212BJ476MG-T 47µF, 6.3V, 0805, X5R
Murata GRM31CR61C226ME15L 22µF, 25V, 1206, X5R
Taiyo Yuden TMK316BBJ226ML-T 22µF, 25V, 1206, X5R
V
OUT
(V)
C
IN
(CERAMIC)
(µF)
C
OUT1
(CERAMIC)
(µF)
C
FF
(pF)
V
IN
(V)
DROOP
(mV)
P-P DERIVATION
(mV)
RECOVERY
TIME (µs)
LOAD
STEP (A)
LOAD STEP
SLEW RATE
(A/µs)
R
FB
()
FREQ
(MHz)
1 10 47 100 5, 12 1 59 40 1 1 90.9 1
1.2 10 47 100 5, 12 1 59 40 1 1 60.4 1
1.5 10 47 100 5, 12 1 66 40 1 1 40.2 1
1.8 10 47 100 5, 12 1 75 40 1 1 30.1 1
2.5 10 47 100 5, 12 2 108 50 1 1 19.1 1
3.3 10 47 100 5, 12 3 111 60 1 1 13.3 2
5 10 47 100 12 5 156 60 1 1 8.25k 2
Safety Considerations
The LTM4623 modules do not provide galvanic isolation
from V
IN
to V
OUT
. There is no internal fuse. If required,
a slow blow fuse with a rating twice the maximum input
current needs to be provided to protect each unit from
catastrophic failure. The device does support thermal
shutdown and overcurrent protection.
Layout Checklist/Example
The high integration of LTM4623 makes the PCB board
layout very simple and easy. However, to optimize its electri
-
cal and thermal performance, some layout considerations
are still necessar
y
.
Use large PCB copper areas for high current paths,
including V
IN
, GND and V
OUT
. It helps to minimize the
PCB conduction loss and thermal stress.
Place high frequency ceramic input and output capaci
-
tors next to the V
IN
, PGND and V
OUT
pins to minimize
high frequency noise.
Place a dedicated power ground layer underneath the unit.
To minimize the via conduction loss and reduce module
thermal stress, use multiple vias for interconnection
between top layer and other power layers.
Do not put via directly on the pad, unless they are
capped or plated over.
Table 5. 3.3V Output, No Heat Sink
DERATING CURVE V
IN
(V) POWER LOSS CURVE AIR FLOW (LFM) HEAT SINK θ
JA(°C/W)
Figures 18, 19, 20 5, 12, 16 Figure 10 0 None 25
Figures 18, 19, 20 5, 12, 16 Figure 10 200 None 22
Figures 18, 19, 20 5, 12, 16 Figure 10 400 None 22
Table 6. 5V Output, No Heat Sink
DERATING CURVE V
IN
(V) POWER LOSS CURVE AIR FLOW (LFM) HEAT SINK θ
JA(°C/W)
Figures 21, 22 12, 16 Figure 11 0 None 25
Figures 21, 22 12, 16 Figure 11 200 None 22
Figures 21, 22 12, 16 Figure 11 400 None 22
LTM4623
21
4623fc
For more information www.linear.com/LTM4623
applicaTions inForMaTion
Figure 23. Recommended PCB Layout
Figure 24. 4V
IN
to 20V
IN
, 1.5V Output at 3A Design Figure 25. 2.375V
IN
to 4V
IN
, 1V Output at 3A Design
with 800kHz Reduced Frequency
V
IN
C
OUT
GND
V
OUT
4623 F19
GND
C
IN
V
IN
SV
IN
RUN
INTV
CC
MODE
PHMODE
TRACK/SS
PGOOD
LTM4623
CLKINFREQ CLKOUT
V
OUT
10µF
25V
47µF
4V
V
IN
4V TO 20V
V
OUT
1.5V
3A
FB
COMP
GND
40.2k
SGND
4623 F20
0.1µF
V
IN
SV
IN
RUN
INTV
CC
MODE
PHMODE
TRACK/SS
PGOOD
LTM4623
CLKIN
CLKOUTFREQ
5V
V
OUT
10µF
6.3V
1.31MΩ
F
6.3V
47µF
4V
V
IN
2.375V TO 4V
V
OUT
1V
3A
FB
COMP
GND
90.9k
SGND
4623 F21
0.1µF
Use a separated SGND ground copper area for com-
ponents connected to signal pins. Connect the SGND
to GND underneath the unit.
Bring out test points on the signal pins for monitoring.
Figure 23 gives a good example of the recommended layout.

LTM4623EY#PBF

Mfr. #:
Manufacturer:
Analog Devices / Linear Technology
Description:
Switching Voltage Regulators Ultrathin 20VIN, 3A Step-Down Module Regulator
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union