4
AT45DB642
1638FDFLSH09/02
CONTINUOUS ARRAY READ: By supplying an initial starting address for the main memory
array, the Continuous Array Read command can be utilized to sequentially read a continuous
stream of data from the device by simply providing a clock signal; no additional addressing
information or control signals need to be provided. The DataFlash incorporates an internal
address counter that will automatically increment on every clock cycle, allowing one continu-
ous read operation without the need of additional address sequences. To perform a
continuous read, an opcode of 68H or E8H must be clocked into the device followed by three
address bytes (which comprise the 24-bit page and byte address sequence) and a series of
dont care bytes (four dont care bytes if using the serial interface or 60 dont care bytes if
using the parallel interface). The first 13 bits (PA12 - PA0) of the 24-bit (three byte) address
sequence specify which page of the main memory array to read, and the last 11 bits (BA10 -
BA0) of the 24-bit address sequence specify the starting byte address within the page. The
four or 60 dont care bytes that follow the three address bytes are needed to initialize the read
operation. Following the dont care bytes, additional clock pulses on the SCK/CLK pin will
result in data being output on either the SO (serial output) pin or the parallel output pins (I/O7-
I/O0).
The CS
pin must remain low during the loading of the opcode, the address bytes, the dont
care bytes, and the reading of data. When the end of a page in main memory is reached dur-
ing a Continuous Array Read, the device will continue reading at the beginning of the next
page with no delays incurred during the page boundary crossover (the crossover from the end
of one page to the beginning of the next page). When the last bit (or byte if using the parallel
interface mode) in the main memory array has been read, the device will continue reading
back at the beginning of the first page of memory. As with crossing over page boundaries, no
delays will be incurred when wrapping around from the end of the array to the beginning of the
array.
A low-to-high transition on the CS
pin will terminate the read operation and tri-state the output
pins (SO or I/O7-I/O0). The maximum SCK/CLK frequency allowable for the Continuous Array
Read is defined by the f
CAR
specification. The Continuous Array Read bypasses both data
buffers and leaves the contents of the buffers unchanged.
BURST ARRAY READ WITH SYNCHRONOUS DELAY: The Burst Array Read with Synchro-
nous Delay functions very similarly to the Continuous Array Read operation but allows much
higher read throughputs by utilizing faster clock frequencies. It incorporates a synchronous
delay (through the use of don't care clock cycles) when crossing over page boundaries. To
perform a Burst Array Read with Synchronous Delay, an opcode of 69H or E9H must be
clocked into the device followed by three address bytes (which comprise the 24-bit page and
byte address sequence) and a series of don't care bytes (four don't care bytes if using the
serial interface or 60 don't care bytes if using the parallel interface). The first 13 bits (PA12-
PA0) of the 24-bit (three byte) address sequence specify which page of the main memory
array to read, and the last 11 bits (BA10-BA0) of the 24-bit address sequence specify the start-
ing byte address within the page. The don't care bytes that follow the three address bytes are
needed to initialize the read operation. Following the don't care bytes, additional clock pulses
on the SCK/CLK pin will result in data being output on either the SO pin or the I/O7-I/O0 pins.
5
AT45DB642
1638FDFLSH09/02
As with the Continuous Array Read, the CS pin must remain low during the loading of the
opcode, the address bytes, the don't care bytes, and the reading of data. During a Burst Array
Read with Synchronous Delay, when the end of a page in main memory is reached (the last bit
or the last byte of the page has been clocked out), the system must send an additional 32
don't care clock cycles before the first bit (or byte if using the parallel interface mode) of the
next page can be read out. These 32 don't care clock cycles are necessary to allow the device
enough time to cross over the burst read boundary (the crossover from the end of one page to
the beginning of the next page). By utilizing the 32 don't care clock cycles, the system does
not need to delay the SCK/CLK signal to the device which allows synchronous operation when
reading multiple pages of the memory array. Please see the detailed read timing waveforms
for illustrations (beginning on page 21) on which clock cycle data will actually begin to be
output.
When the last bit (or byte in the parallel interface mode) in the main memory array has been
read, the device will continue reading back at the beginning of the first page of memory. The
transition from the last bit (or byte when using the parallel interface) of the array back to the
beginning of the array is also considered a burst read boundary. Therefore, the system must
send 32 don't care clock cycles before the first bit (or byte if using the parallel interface mode)
of the memory array can be read.
A low-to-high transition on the CS
pin will terminate the read operation and tri-state the output
pins (SO or I/O7-I/O0). The maximum SCK/CLK frequency allowable for the Burst Array Read
with Synchronous Delay is defined by the f
BARSD
specification. The Burst Array Read with Syn-
chronous Delay bypasses both data buffers and leaves the contents of the buffers unchanged.
MAIN MEMORY PAGE READ: A main memory page read allows the user to read data
directly from any one of the 8192 pages in the main memory, bypassing both of the data buff-
ers and leaving the contents of the buffers unchanged. To start a page read, an opcode of 52H
or D2H must be clocked into the device followed by three address bytes (which comprise the
24-bit page and byte address sequence) and a series of dont care bytes (four dontcarebytes
if using the serial interface or 60 dont care bytes if the using parallel interface). The first 13
bits (PA12 - PA0) of the 24-bit (three-byte) address sequence specify the page in main mem-
ory to be read, and the last 11 bits (BA10 - BA0) of the 24-bit address sequence specify the
starting byte address within that page. The four or 60 dont care bytes that follow the three
address bytes are sent to initialize the read operation. Following the dontcarebytes,addi-
tional pulses on SCK/CLK result in data being output on either the SO (serial output) pin or the
parallel output pins (I/O7 - I/O0). The CS
pin must remain low during the loading of the
opcode, the address bytes, the dont care bytes, and the reading of data. When the end of a
page in main memory is reached, the device will continue reading back at the beginning of the
same page. A low-to-high transition on the CS
pin will terminate the read operation and tri-
state the output pins (SO or I/O7 - I/O0).
BUFFER READ: Data can be read from either one of the two buffers, using different opcodes
to specify which buffer to read from. An opcode of 54H or D4H is used to read data from buffer
1, and an opcode of 56H or D6H is used to read data from buffer 2. To perform a buffer read,
the opcode must be clocked into the device followed by three address bytes comprised of 13
dont care bits and 11 buffer address bits (BFA10 - BFA0). Following the three address bytes,
an additional dont care byte must be clocked in to initialize the read operation. Since the
buffer size is 1056 bytes, 11 buffer address bits are required to specify the first byte of data to
be read from the buffer. The CS
pin must remain low during the loading of the opcode, the
address bytes, the dont care bytes, and the reading of data. When the end of a buffer is
reached, the device will continue reading back at the beginning of the buffer. A low-to-high
transition on the CS
pin will terminate the read operation and tri-state the output pins (SO or
I/O7 - I/O0).
6
AT45DB642
1638FDFLSH09/02
STATUS REGISTER READ: The status register can be used to determine the devices
ready/busy status, the result of a Main Memory Page to Buffer Compare operation, or the
device density. To read the status register, an opcode of 57H or D7H must be loaded into the
device. After the opcode is clocked in, the 1-byte status register will be clocked out on the out-
put pins (SO or I/O7 - I/O0), starting with the next clock cycle. When using the serial interface,
the data in the status register, starting with the MSB (bit 7), will be clocked out on the SO pin
during the next eight clock cycles.
The five most-significant bits of the status register will contain device information, while the
remaining three least-significant bits are reserved for future use and will have undefined val-
ues. After the one byte of the status register has been clocked out, the sequence will repeat
itself (as long as CS
remains low and SCK/CLK is being toggled). The data in the status regis-
ter is constantly updated, so each repeating sequence will output new data.
Ready/busy status is indicated using bit 7 of the status register. If bit 7 is a 1, then the device
is not busy and is ready to accept the next command. If bit 7 is a 0, then the device is in a busy
state. The user can continuously poll bit 7 of the status register by stopping SCK/CLK at a low
level once bit 7 has been output on the SO or I/O7 pin. The status of bit 7 will continue to be
output on the SO or I/O7 pin, and once the device is no longer busy, the state of the SO or
I/O7 pin will change from 0 to 1. There are eight operations that can cause the device to be in
a busy state: Main Memory Page to Buffer Transfer, Main Memory Page to Buffer Compare,
Buffer to Main Memory Page Program with Built-in Erase, Buffer to Main Memory Page Pro-
gram without Built-in Erase, Page Erase, Block Erase, Main Memory Page Program, and Auto
Page Rewrite.
The result of the most recent Main Memory Page to Buffer Compare operation is indicated
using bit 6 of the status register. If bit 6 is a 0, then the data in the main memory page matches
the data in the buffer. If bit 6 is a 1, then at least one bit of the data in the main memory page
does not match the data in the buffer.
The device density is indicated using bits 5, 4, 3 and 2 of the status register. For the
AT45DB642, the four bits are logical 1s. The decimal value of these four binary bits does not
equate to the device density; the four bits represent a combinational code relating to differing
densities of DataFlash devices, allowing a total of sixteen different density configurations.
Program and
Erase Commands
BUFFER WRITE: Data can be clocked in from the input pins (SI or I/O7 - I/O0) into either
buffer 1 or buffer 2. To load data into either buffer, a 1-byte opcode, 84H for buffer 1 or 87H for
buffer 2, must be clocked into the device, followed by three address bytes comprised of 13
dont care bits and 11 buffer address bits (BFA10 - BFA0). The 11 buffer address bits specify
the first byte in the buffer to be written. After the last address byte has been clocked into the
device, data can then be clocked in on subsequent clock cycles. If the end of the data buffer is
reached, the device will wrap around back to the beginning of the buffer. Data will continue to
be loaded into the buffer until a low-to-high transition is detected on the CS
pin.
Status Register Format
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
RDY/BUSY
COMP1111XX

AT45DB642-TC

Mfr. #:
Manufacturer:
Microchip Technology / Atmel
Description:
NOR Flash 64M bit
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union

Products related to this Datasheet