7
FN6462.0
February 26, 2007
input oscillations due to the capacitive load seen by the
PWM input through the body diode of the controller’s PWM
output when the power-up and/or power-down sequence of
bias supplies of the driver and PWM controller are required.
Power-On Reset (POR) Function
During initial startup, the VCC voltage rise is monitored.
Once the rising VCC voltage exceeds 9.8V (typically),
operation of the driver is enabled and the PWM input signal
takes control of the gate drives. If VCC drops below the
falling threshold of 7.6V (typically), operation of the driver is
disabled.
Pre-POR Overvoltage Protection
Prior to VCC exceeding its POR level, the upper gate is held
low and the lower gate is controlled by the overvoltage
protection circuits during initial startup. The PHASE is
connected to the gate of the low side MOSFET (LGATE),
which provides some protection to the microprocessor if the
upper MOSFET(s) is shorted during initial startup. For
complete protection, the low side MOSFET should have a
gate threshold well below the maximum voltage rating of the
load/microprocessor.
When VCC drops below its POR level, both gates pull low
and the Pre-POR overvoltage protection circuits are not
activated until VCC resets.
Internal Bootstrap Device
Both drivers feature an internal bootstrap schottky diode.
Simply adding an external capacitor across the BOOT and
PHASE pins completes the bootstrap circuit. The bootstrap
function is also designed to prevent the bootstrap capacitor
from overcharging due to the large negative swing at the
trailing-edge of the PHASE node. This reduces voltage
stress on the boot to phase pins.
The bootstrap capacitor must have a maximum voltage
rating above UVCC + 5V and its capacitance value can be
chosen from the following equation:
where Q
G1
is the amount of gate charge per upper MOSFET
at V
GS1
gate-source voltage and N
Q1
is the number of
control MOSFETs. The ΔV
BOOT_CAP
term is defined as the
allowable droop in the rail of the upper gate drive.
As an example, suppose two IRLR7821 FETs are chosen as
the upper MOSFETs. The gate charge, Q
G
, from the data
sheet is 10nC at 4.5V (V
GS
) gate-source voltage. Then the
Q
GATE
is calculated to be 53nC for UVCC (i.e. PVCC in
PX3511B, VCC in PX3511A) = 12V. We will assume a
200mV droop in drive voltage over the PWM cycle. We find
that a bootstrap capacitance of at least 0.267μF is required.
Gate Drive Voltage Versatility
The PX3511A and PX3511B provide the user flexibility in
choosing the gate drive voltage for efficiency optimization.
The PX3511A upper gate drive is fixed to VCC [+12V], but
the lower drive rail can range from 12V down to 5V
depending on what voltage is applied to PVCC. The
PX3511B ties the upper and lower drive rails together.
Simply applying a voltage from 5V up to 12V on PVCC sets
both gate drive rail voltages simultaneously.
Power Dissipation
Package power dissipation is mainly a function of the
switching frequency (F
SW
), the output drive impedance, the
external gate resistance, and the selected MOSFET’s
internal gate resistance and total gate charge. Calculating
the power dissipation in the driver for a desired application is
critical to ensure safe operation. Exceeding the maximum
allowable power dissipation level will push the IC beyond the
maximum recommended operating junction temperature of
+125°C. The maximum allowable IC power dissipation for
the SO8 package is approximately 800mW at room
temperature, while the power dissipation capacity in the DFN
package with an exposed heat escape pad is more than
1.5W. The DFN package is more suitable for high frequency
applications. See Layout Considerations paragraph for
thermal transfer improvement suggestions. When designing
the driver into an application, it is recommended that the
following calculation is used to ensure safe operation at the
desired frequency for the selected MOSFETs. The total gate
drive power losses due to the gate charge of MOSFETs and
the driver’s internal circuitry and their corresponding average
C
BOOT_CAP
Q
GATE
ΔV
BOOT_CAP
--------------------------------------
Q
GATE
Q
G1
UVCC
V
GS1
------------------------------------
N
Q1
=
(EQ. 1)
50nC
20nC
FIGURE 2. BOOTSTRAP CAPACITANCE vs BOOT RIPPLE
VOLTAGE
ΔV
BOOT_CAP
(V)
C
BOOT_CAP
(µF)
1.6
1.4
1.2
1.
0.8
0.6
0.4
0.2
0.0
0.30.0 0.1 0.2 0.4 0.5 0.6 0.90.7 0.8 1.0
Q
GATE
= 100nC
PX3511A, PX3511B
8
FN6462.0
February 26, 2007
driver current can be estimated with Equations 2 and 3,
respectively,
where the gate charge (Q
G1
and Q
G2
) is defined at a
particular gate to source voltage (V
GS1
and V
GS2
) in the
corresponding MOSFET datasheet; I
Q
is the driver’s total
quiescent current with no load at both drive outputs; N
Q1
and N
Q2
are number of upper and lower MOSFETs,
respectively; UVCC and LVCC are the drive voltages for
both upper and lower FETs, respectively. The I
Q*
VCC
product is the quiescent power of the driver without
capacitive load and is typically 116mW at 300kHz.
The total gate drive power losses are dissipated among the
resistive components along the transition path. The drive
resistance dissipates a portion of the total gate drive power
losses, the rest will be dissipated by the external gate
resistors (R
G1
and R
G2
) and the internal gate resistors
(R
GI1
and R
GI2
) of MOSFETs. Figures 3 and 4 show the
typical upper and lower gate drives turn-on transition path.
The power dissipation on the driver can be roughly
estimated as:
Layout Considerations
For heat spreading, place copper underneath the IC whether
it has an exposed pad or not. The copper area can be
extended beyond the bottom area of the IC and/or
connected to buried copper plane(s) with thermal vias. This
combination of vias for vertical heat escape, extended
copper plane, and buried planes for heat spreading allows
the IC to achieve its full thermal potential.
Place each channel power component as close to each
other as possible to reduce PCB copper losses and PCB
parasitics: shortest distance between DRAINs of upper FETs
and SOURCEs of lower FETs; shortest distance between
DRAINs of lower FETs and the power ground. Thus, smaller
amplitudes of positive and negative ringing are on the
switching edges of the PHASE node. However, some space
in between the power components is required for good
airflow. The traces from the drivers to the FETs should be
kept short and wide to reduce the inductance of the traces
and to promote clean drive signals.
P
Qg_TOT
P
Qg_Q1
P
Qg_Q2
I
Q
VCC++=
(EQ. 2)
P
Qg_Q1
Q
G1
UVCC
2
V
GS1
---------------------------------------
F
SW
N
Q1
=
P
Qg_Q2
Q
G2
LVCC
2
V
GS2
--------------------------------------
F
SW
N
Q2
=
I
DR
Q
G1
UVCC N
Q1
V
GS1
------------------------------------------------------
Q
G2
LVCC N
Q2
V
GS2
-----------------------------------------------------
+
⎝⎠
⎜⎟
⎛⎞
F
SW
I
Q
+=
(EQ. 3)
P
DR
P
DR_UP
P
DR_LOW
I
Q
VCC++=
(EQ. 4)
P
DR_UP
R
HI1
R
HI1
R
EXT1
+
--------------------------------------
R
LO1
R
LO1
R
EXT1
+
----------------------------------------
+
⎝⎠
⎜⎟
⎛⎞
P
Qg_Q1
2
---------------------
=
P
DR_LOW
R
HI2
R
HI2
R
EXT2
+
--------------------------------------
R
LO2
R
LO2
R
EXT2
+
----------------------------------------
+
⎝⎠
⎜⎟
⎛⎞
P
Qg_Q2
2
---------------------
=
R
EXT1
R
G1
R
GI1
N
Q1
-------------
+=
R
EXT2
R
G2
R
GI2
N
Q2
-------------
+=
FIGURE 3. TYPICAL UPPER-GATE DRIVE TURN-ON PATH
FIGURE 4. TYPICAL LOWER-GATE DRIVE TURN-ON PATH
Q1
D
S
G
R
GI1
R
G1
BOOT
R
HI1
C
DS
C
GS
C
GD
R
LO1
PHASE
UVCC
LVCC
Q2
D
S
G
R
GI2
R
G2
R
HI2
C
DS
C
GS
C
GD
R
LO2
PX3511A, PX3511B
9
FN6462.0
February 26, 2007
PX3511A, PX3511B
Dual Flat No-Lead Plastic Package (DFN)
D
E
A
B
0.10 MC
e
0.415
C
SECTION "C-C"
NX (b)
(A1)
2X
C
0.15
0.15
2X
B
NX L
REF.
(Nd-1)Xe
5
A
C
(DATUM B)
D2
D2/2
E2
E2/2
TOP VIEW
7
BOTTOM VIEW
5
6
INDEX
AREA
8
AB
NX
k
6
INDEX
AREA
(DATUM A)
12
N-1N
NX b
8
NX b
NX L
0.200
C
A
SEATING
PLANE
0.08
C
A3
SIDE VIEW
0.10 C
L10.3x3
10 LEAD DUAL FLAT NO-LEAD PLASTIC PACKAGE
SYMBOL
MILLIMETERS
NOTESMIN NOMINAL MAX
A 0.80 0.90 1.00 -
A1 - - 0.05 -
A3 0.20 REF -
b 0.18 0.23 0.28 5,8
D 3.00 BSC -
D2 1.95 2.00 2.05 7,8
E 3.00 BSC -
E2 1.55 1.60 1.65 7,8
e 0.50 BSC -
k0.25 - - -
L0.300.35 0.40 8
N102
Nd 5 3
Rev. 3 6/04
NOTES:
1. Dimensioning and tolerancing conform to ASME Y14.5-1994.
2. N is the number of terminals.
3. Nd refers to the number of terminals on D.
4. All dimensions are in millimeters. Angles are in degrees.
5. Dimension b applies to the metallized terminal and is measured
between 0.15mm and 0.30mm from the terminal tip.
6. The configuration of the pin #1 identifier is optional, but must be
located within the zone indicated. The pin #1 identifier may be
either a mold or mark feature.
7. Dimensions D2 and E2 are for the exposed pads which provide
improved electrical and thermal performance.
8. Nominal dimensions are provided to assist with PCB Land
Pattern Design efforts, see Intersil Technical Brief TB389.
FOR ODD TERMINAL/SIDE
C
L
e
TERMINAL TIP
L
CC

PX3511ADDG

Mfr. #:
Manufacturer:
Renesas / Intersil
Description:
Gate Drivers DRVR SEE ISL6594X LGATE DETECT 10LD
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union