LTC2430/LTC2431
19
24301f
The serial data output pin (SDO) is Hi-Z as long as CS is
HIGH. At any time during the conversion cycle, CS may be
pulled LOW in order to monitor the state of the converter.
Once CS is pulled LOW, SCK goes LOW and EOC is output
to the SDO pin. EOC = 1 while a conversion is in progress
and EOC = 0 if the device is in the sleep state.
When testing EOC, if the conversion is complete (EOC = 0),
the device will exit the sleep state and enter the data output
state if CS remains LOW. In order to allow the device to
return to the low power sleep state, CS must be pulled
HIGH before the first rising edge of SCK. In the internal
SCK timing mode, SCK goes HIGH and the device begins
outputting data at time t
EOCtest
after the falling edge of CS
(if EOC = 0) or t
EOCtest
after EOC goes LOW (if CS is LOW
during the falling edge of EOC). The value of t
EOCtest
is 23µs
if the device is using its internal oscillator (F
O
= logic LOW
or HIGH). If F
O
is driven by an external oscillator of
frequency f
EOSC
, then t
EOCtest
is 3.6/f
EOSC
. If CS is pulled
HIGH before time t
EOCtest
, the device returns to the sleep
state. The conversion result is held in the internal static
shift register.
If CS remains LOW longer than t
EOCtest
, the first rising
edge of SCK will occur and the conversion result is serially
shifted out of the SDO pin. The data output cycle begins on
this first rising edge of SCK and concludes after the 24th
rising edge. Data is shifted out the SDO pin on each falling
edge of SCK. The internally generated serial clock is output
to the SCK pin. This signal may be used to shift the
conversion result into external circuitry. EOC can be
latched on the first rising edge of SCK and the last bit of the
conversion result on the 24th rising edge of SCK. After the
24th rising edge, SDO goes HIGH (EOC = 1), SCK stays
HIGH and a new conversion starts.
Typically, CS remains LOW during the data output state.
However, the data output state may be aborted by pulling
CS HIGH anytime between the first and 24th rising edge of
SCK, see Figure 9. On the rising edge of CS, the device
aborts the data output state and immediately initiates a
new conversion. This is useful for systems not requiring
all 24 bits of output data, aborting an invalid conversion
cycle, or synchronizing the start of a conversion. If CS is
pulled HIGH while the converter is driving SCK LOW, the
Figure 9. Internal Serial Clock, Reduced Data Output Length
APPLICATIO S I FOR ATIO
WUUU
SDO
SCK
(INTERNAL)
CS
>t
EOCtest
MSBSIG
BIT 8
TEST EOC
BIT 19 BIT 18BIT 20BIT 21BIT 22
EOC
BIT 23
EOC
BIT 0
SLEEP
TEST EOC
(OPTIONAL)
SLEEP
DATA OUTPUT
Hi-Z Hi-Z Hi-Z Hi-Z Hi-Z
DATA
OUTPUT
CONVERSION
CONVERSION
SLEEP
2431 F09
<t
EOCtest
V
CC
10k
TEST EOC
V
CC
F
O
REF
+
REF
SCK
IN
+
IN
SDO
GND
CS
REFERENCE
VOLTAGE
0.1V TO V
CC
ANALOG INPUT RANGE
0.5V
REF
TO 0.5V
REF
3-WIRE
SPI INTERFACE
1µF
2.7V TO 5.5V
LTC2430/
LTC2431
= 50Hz REJECTION
= EXTERNAL OSCILLATOR
= 60Hz REJECTION
V
CC
LTC2430/LTC2431
20
24301f
internal pull-up is not available to restore SCK to a logic
HIGH state. This will cause the device to exit the internal
serial clock mode on the next falling edge of CS. This can
be avoided by adding an external 10k pull-up resistor to
the SCK pin or by never pulling CS HIGH when SCK is LOW.
Whenever SCK is LOW, the
LTC2430/LTC2431
’s internal
pull-up at pin SCK is disabled. Normally, SCK is not exter-
nally driven if the device is in the internal SCK timing mode.
However, certain applications may require an external
driver on SCK. If this driver goes Hi-Z after outputting a LOW
signal, the
LTC2430/LTC2431
’s internal pull-up remains
disabled. Hence, SCK remains LOW. On the next falling
edge of CS, the device is switched to the external SCK timing
mode. By adding an external 10k pull-up resistor to SCK,
this pin goes HIGH once the external driver goes Hi-Z. On
the next CS falling edge, the device will remain in the in-
ternal SCK timing mode.
A similar situation may occur during the sleep state when
CS is pulsed HIGH-LOW-HIGH in order to test the conver-
sion status. If the device is in the sleep state (EOC = 0),
SCK will go LOW. Once CS goes HIGH (within the time
period defined above as t
EOCtest
), the internal pull-up is
activated. For a heavy capacitive load on the SCK pin, the
internal pull-up may not be adequate to return SCK to a
HIGH level before CS goes low again. This is not a concern
under normal conditions where CS remains LOW after
detecting EOC = 0. This situation is easily overcome by
adding an external 10k pull-up resistor to the SCK pin.
Internal Serial Clock, 2-Wire I/O,
Continuous Conversion
This timing mode uses a 2-wire, all output (SCK and SDO)
interface. The conversion result is shifted out of the device
by an internally generated serial clock (SCK) signal, see
Figure 10. CS may be permanently tied to ground, simpli-
fying the user interface or isolation barrier.
The internal serial clock mode is selected at the end of the
power-on reset (POR) cycle. The POR cycle is concluded
approximately 1ms after V
CC
exceeds 2V. An internal weak
pull-up is active during the POR cycle; therefore, the
internal serial clock timing mode is automatically selected
if SCK is not externally driven LOW (if SCK is loaded such
that the internal pull-up cannot pull the pin HIGH, the
external SCK mode will be selected).
During the conversion, the SCK and the serial data output
pin (SDO) are HIGH (EOC = 1). Once the conversion is
complete, SCK and SDO go LOW (EOC = 0) indicating the
conversion has finished and the device has entered the
Figure 10. Internal Serial Clock, CS = 0 Continuous Operation
APPLICATIO S I FOR ATIO
WUUU
SDO
SCK
(INTERNAL)
CS
MSBSIG
BIT 0
LSB
BIT 19 BIT 18BIT 20BIT 21BIT 22
EOC
BIT 23
DATA OUTPUT CONVERSIONCONVERSION
2431 F10
V
CC
F
O
REF
+
REF
SCK
IN
+
IN
SDO
GND
CS
REFERENCE
VOLTAGE
0.1V TO V
CC
ANALOG INPUT RANGE
0.5V
REF
TO 0.5V
REF
1µF
2.7V TO 5.5V
2-WIRE I/O
LTC2430/
LTC2431
= 50Hz REJECTION
= EXTERNAL OSCILLATOR
= 60Hz REJECTION
V
CC
LTC2430/LTC2431
21
24301f
low power sleep state. The part remains in the sleep state
a minimum amount of time (1/2 the internal SCK period)
then immediately begins outputting data. The data output
cycle begins on the first rising edge of SCK and ends after
the 24th rising edge. Data is shifted out the SDO pin on
each falling edge of SCK. The internally generated serial
clock is output to the SCK pin. This signal may be used
to shift the conversion result into external circuitry. EOC
can be latched on the first rising edge of SCK and the last
bit of the conversion result can be latched on the 24th
rising edge of SCK. After the 24th rising edge, SDO goes
HIGH (EOC = 1) indicating a new conversion is in progress.
SCK remains HIGH during the conversion.
PRESERVING THE CONVERTER ACCURACY
The LTC2430/LTC2431 are designed to reduce as much as
possible the conversion result sensitivity to device
decoupling, PCB layout, antialiasing circuits, line fre-
quency perturbations and so on. Nevertheless, in order to
preserve the extreme accuracy capability of this part,
some simple precautions are desirable.
Digital Signal Levels
The LTC2430/LTC2431’s digital interface is easy to use.
The digital inputs (F
O
, CS and SCK in External SCK mode
of operation) accept standard TTL/CMOS logic levels and
the internal hysteresis receivers can tolerate edge rates as
slow as 100µs. However, some considerations are required
to take advantage of the exceptional accuracy and low
supply current of this converter.
The digital output signals (SDO and SCK in Internal SCK
mode of operation) are less of a concern because they are
not generally active during the conversion state.
While a digital input signal is in the range 0.5V to
(V
CC
–␣ 0.5V), the CMOS input receiver draws additional
current from the power supply. It should be noted that,
when any one of the digital input signals (F
O
, CS and SCK
in External SCK mode of operation) is within this range,
the
LTC2430/LTC2431
power supply current may in-
crease even if the signal in question is at a valid logic level.
For micropower operation, it is recommended to drive all
digital input signals to full CMOS levels [V
IL
< 0.4V and
V
OH
> (V
CC
– 0.4V)].
During the conversion period, the undershoot and/or
overshoot of a fast digital signal connected to the
LTC2430/
LTC2431
pins may severely disturb the analog to digital
conversion process. Undershoot and overshoot can oc-
cur because of the impedance mismatch at the converter
pin when the transition time of an external control signal
is less than twice the propagation delay from the driver to
LTC2430/LTC2431
. For reference, on a regular FR-4 board,
signal propagation velocity is approximately 183ps/inch
for internal traces and 170ps/inch for surface traces.
Thus, a driver generating a control signal with a minimum
transition time of 1ns must be connected to the converter
pin through a trace shorter than 2.5 inches. This problem
becomes particularly difficult when shared control lines
are used and multiple reflections may occur. The solution
is to carefully terminate all transmission lines close to
their characteristic impedance.
Parallel termination near the LTC2430/LTC2431 pin will
eliminate this problem but will increase the driver power
dissipation. A series resistor between 27 and 56
placed near the driver or near the LTC2431 pin will also
eliminate this problem without additional power dissipa-
tion. The actual resistor value depends upon the trace
impedance and connection topology.
An alternate solution is to reduce the edge rate of the
control signals. It should be noted that using very slow
edges will increase the converter power supply current
during the transition time. The differential input and refer-
ence architecture reduce substantially the converter’s
sensitivity to ground currents.
Particular attention must be given to the connection of the
F
O
signal when the converter (LTC2430 or LTC2431) is
used with an external conversion clock. This clock is active
during the conversion time and the normal mode rejection
provided by the internal digital filter is not very high at this
frequency. A normal mode signal of this frequency at the
converter reference terminals may result into DC gain and
INL errors. A normal mode signal of this frequency at the
converter input terminals may result into a DC offset error.
Such perturbations may occur due to asymmetric capaci-
tive coupling between the F
O
signal trace and the converter
input and/or reference connection traces. An immediate
solution is to maintain maximum possible separation
APPLICATIO S I FOR ATIO
WUUU

LTC2430CGN#TRPBF

Mfr. #:
Manufacturer:
Analog Devices Inc.
Description:
Analog to Digital Converters - ADC 20-bit Differential Delta-Sigma ADC
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union