CYRF89435
Document Number: 001-76581 Rev. *G Page 7 of 39
Development Tools
PSoC Designer™ is the revolutionary integrated design
environment (IDE) that you can use to customize PSoC to meet
your specific application requirements. PSoC Designer software
accelerates system design and time to market. Develop your
applications using a library of precharacterized analog and digital
peripherals (called user modules) in a drag-and-drop design
environment. Then, customize your design by leveraging the
dynamically generated application programming interface (API)
libraries of code. Finally, debug and test your designs with the
integrated debug environment, including in-circuit emulation and
standard software debug features. PSoC Designer includes:
Application editor graphical user interface (GUI) for device and
user module configuration and dynamic reconfiguration
Extensive user module catalog
Integrated source-code editor (C and assembly)
Free C compiler with no size restrictions or time limits
Built-in debugger
In-circuit emulation
Built-in support for communication interfaces:
Hardware and software I
2
C slaves and masters
SPI master and slave, and wireless
PSoC Designer supports the entire library of PSoC 1 devices and
runs on Windows XP, Windows Vista, and Windows 7.
PSoC Designer Software Subsystems
Design Entry
In the chip-level view, choose a base device to work with. Then
select different onboard analog and digital components that use
the PSoC blocks, which are called user modules. Examples of
user modules are analog-to-digital converters (ADCs),
digital-to-analog converters (DACs), amplifiers, and filters.
Configure the user modules for your chosen application and
connect them to each other and to the proper pins. Then
generate your project. This prepopulates your project with APIs
and libraries that you can use to program your application.
The tool also supports easy development of multiple
configurations and dynamic reconfiguration. Dynamic
reconfiguration makes it possible to change configurations at run
time. In essence, this lets you to use more than 100 percent of
PSoC’s resources for an application.
Code Generation Tools
The code generation tools work seamlessly within the
PSoC Designer interface and have been tested with a full range
of debugging tools. You can develop your design in C, assembly,
or a combination of the two.
Assemblers. The assemblers allow you to merge assembly
code seamlessly with C code. Link libraries automatically use
absolute addressing or are compiled in relative mode, and linked
with other software modules to get absolute addressing.
C Language Compilers. C language compilers are available
that support the PSoC family of devices. The products allow you
to create complete C programs for the PSoC family devices. The
optimizing C compilers provide all of the features of C, tailored
to the PSoC architecture. They come complete with embedded
libraries providing port and bus operations, standard keypad and
display support, and extended math functionality.
Debugger
PSoC Designer has a debug environment that provides
hardware in-circuit emulation, allowing you to test the program in
a physical system while providing an internal view of the PSoC
device. Debugger commands allow you to read and program and
read and write data memory, and read and write I/O registers.
You can read and write CPU registers, set and clear breakpoints,
and provide program run, halt, and step control. The debugger
also lets you to create a trace buffer of registers and memory
locations of interest.
Online Help System
The online help system displays online, context-sensitive help.
Designed for procedural and quick reference, each functional
subsystem has its own context-sensitive help. This system also
provides tutorials and links to FAQs and an Online Support
Forum to aid the designer.
In-Circuit Emulator
A low-cost, high-functionality in-circuit emulator (ICE) is
available for development support. This hardware can program
single devices.
The emulator consists of a base unit that connects to the PC
using a USB port. The base unit is universal and operates with
all PSoC devices. Emulation pods for each device family are
available separately. The emulation pod takes the place of the
PSoC device in the target board and performs full-speed
(24 MHz) operation.
N
o
t
reco
mm
e
n
ded
fo
r
ne
w desi
g
ns
CYRF89435
Document Number: 001-76581 Rev. *G Page 8 of 39
Designing with PSoC Designer
The development process for the PSoC device differs from that
of a traditional fixed-function microprocessor. The configurable
analog and digital hardware blocks give the PSoC architecture a
unique flexibility that pays dividends in managing specification
change during development and lowering inventory costs. These
configurable resources, called PSoC blocks, have the ability to
implement a wide variety of user-selectable functions. The PSoC
development process is:
1. Select user modules.
2. Configure user modules.
3. Organize and connect.
4. Generate, verify, and debug.
Select User Modules
PSoC Designer provides a library of prebuilt, pretested hardware
peripheral components called “user modules”. User modules
make selecting and implementing peripheral devices, both
analog and digital, simple.
Configure User Modules
Each user module that you select establishes the basic register
settings that implement the selected function. They also provide
parameters and properties that allow you to tailor their precise
configuration to your particular application. For example, a PWM
User Module configures one or more digital PSoC blocks, one
for each eight bits of resolution. Using these parameters, you can
establish the pulse width and duty cycle. Configure the
parameters and properties to correspond to your chosen
application. Enter values directly or by selecting values from
drop-down menus. All of the user modules are documented in
datasheets that may be viewed directly in PSoC Designer or on
the Cypress website. These user module datasheets explain the
internal operation of the user module and provide performance
specifications. Each datasheet describes the use of each user
module parameter, and other information that you may need to
successfully implement your design.
Organize and Connect
Build signal chains at the chip level by interconnecting user
modules to each other and the I/O pins. Perform the selection,
configuration, and routing so that you have complete control over
all on-chip resources.
Generate, Verify, and Debug
When you are ready to test the hardware configuration or move
on to developing code for the project, perform the “Generate
Configuration Files” step. This causes PSoC Designer to
generate source code that automatically configures the device to
your specification and provides the software for the system. The
generated code provides APIs with high-level functions to control
and respond to hardware events at run time, and interrupt
service routines that you can adapt as needed.
A complete code development environment lets you to develop
and customize your applications in C, assembly language, or
both.
The last step in the development process takes place inside
PSoC Designer’s Debugger (accessed by clicking the Connect
icon). PSoC Designer downloads the HEX image to the ICE
where it runs at full-speed. PSoC Designer debugging
capabilities rival those of systems costing many times more. In
addition to traditional single-step, run-to-breakpoint, and
watch-variable features, the debug interface provides a large
trace buffer. The interface lets you to define complex breakpoint
events that include monitoring address and data bus values,
memory locations, and external signals.
N
o
t
reco
mm
e
n
ded
fo
r
ne
w desi
g
ns
CYRF89435
Document Number: 001-76581 Rev. *G Page 9 of 39
Pinouts
The CYRF89435 PRoC-CS device is available in a 40-pin QFN package, which is illustrated in the following table. Every port pin
(labeled with a “P”) is capable of Digital I/O and connection to the common analog bus. However, V
DD
, and XRES are not capable of
Digital I/O.
Figure 3. 40-pin QFN pinout
40 39 38 37 36 35 34 33 32 31
1
2
3
4
5
6
7
8
9
10
30
29
28
27
26
25
24
23
22
21
11 12 13 14 15 16 17 18 19 20
QFN
(Top View)
MISO
RST_n
P0[7]
DNU
DNU
FIFO
DNU
P1[0]
VIN
XRES
P1[4]
P1[2]
SPI_SS
VDD
VDD
P1[7]
XTALi
ANT
VDD
P1[1]
GND
P1[3]
PKT
MOSI
CLK
ANTb
P2[3]
VDD
P2[5]
XTALo
VDD
VOUT
VIN
P0[4]
VDD
VIN
P0[3]
VDD
P1[5]
P0[1]
N
o
t
reco
mm
e
n
ded
fo
r
ne
w desi
g
ns

CYRF89435-68LTXC

Mfr. #:
Manufacturer:
Cypress Semiconductor
Description:
RF Transceiver Wireless Capacitive Touch
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union

Products related to this Datasheet