13
LTC1850/LTC1851
18501f
APPLICATIO S I FOR ATIO
WUUU
The LTC1850/LTC1851 are complete and very flexible data
acquisition systems. They consist of a 10-bit/12-bit,
1.25Msps capacitive successive approximation A/D con-
verter with a wideband sample-and-hold, a configurable
8-channel analog input multiplexer, an internal reference
and reference buffer amplifier, a 16-bit parallel digital
output and digital control logic including a programmable
sequencer.
CONVERSION DETAILS
T
he core analog-to-digital converter in the LTC1850/
LTC1851 uses a successive approximation algorithm and
an internal sample-and-hold circuit to convert an analog
signal to a 10-bit/12-bit parallel output. Conversion start
is controlled by the CS and CONVST inputs. At the start of
the conversion, the successive approximation register
(SAR) is reset. Once a conversion cycle is begun, it cannot
be restarted. During the conversion, the internal differen-
tial 10-bit/12-bit capacitive DAC output is sequenced by
the SAR from the most significant bit (MSB) to the least
significant bit (LSB). The outputs of the analog input
multiplexer are connected to the sample-and-hold ca-
pacitors (C
SAMPLE
) during the acquire phase and the
comparator offset is nulled by the zeroing switches. In
this acquire phase, a minimum delay of 150ns will provide
enough time for the sample-and-hold capacitors to ac-
quire the analog signal. During the convert phase, the
comparator zeroing switches are open, putting the com-
parator into compare mode. The input switches connect
C
SAMPLE
to ground, transferring the differential analog
input charge onto the summing junction. This input
charge is successively compared with the binary weighted
charges supplied by the differential ca
pacitive DAC. Bit
decisions are made by the high speed comparator. At the
end of the conversion, the differential DAC output bal-
ances the input charges. The SAR contents (a 10-bit/
12-bit data word), which represents the difference of the
analog input multiplexer outputs, and the 4-bit address
word are loaded into the 14-bit/16-bit output latches.
DYNAMIC PERFORMANCE
Signal-to-Noise Ratio
The signal-to-noise plus distortion ratio [S/(N + D)] is the
ratio between the RMS amplitude of the fundamental input
frequency and the RMS amplitude of all other frequency
components at the ADC output. The output is band limited
to frequencies above DC to below half the sampling
frequency. The effective number of bits (ENOBs) is a
measurement of the resolution of an ADC and is directly
related to the S/(N + D) by the equation:
ENOB = [S/(N + D) – 1.76]/6.02
where ENOB is the effective number of bits and S/(N + D)
is expressed in dB. At the maximum sampling rate of
1.25MHz, the LTC1850/LTC1851 maintain near ideal
ENOBs up to and beyond the Nyquist input frequency of
625kHz.
Total Harmonic Distortion
Total harmonic distortion is the ratio of the RMS sum of all
harmonics of the input signal to the fundamental itself. The
out-of-band harmonics alias into the frequency band
between DC and half the sampling frequency. THD is
expressed as:
THD Log
VVV Vn
V
=
+++
20
234
1
222 2
...
where V1 is the RMS amplitude of the fundamental fre-
quency and V2 through Vn are the amplitudes of the
second through nth harmonics. The LTC1850/LTC1851
have good distortion performance up to the Nyquist fre-
quency and beyond.
Intermodulation Distortion
If the ADC input signal consists of more than one spectral
component, the ADC transfer function nonlinearity can
produce intermodulation distortion (IMD) in addition to
THD.
IMD is the change in one sinusoidal input caused by
the presence of another sinusoidal input at a different
frequency.
14
LTC1850/LTC1851
18501f
APPLICATIO S I FOR ATIO
WUUU
If two pure sine waves of frequencies fa and fb are applied
to the ADC input, nonlinearities in the ADC transfer func-
tion can create distortion products at the sum and differ-
ence frequencies of mfa ± nfb, where m and n = 0, 1, 2, 3,
etc.
For example, the 2nd order IMD terms include (fa ± fb).
If the two input sine waves are equal in magnitude, the
value (in decibels) of the 2nd order IMD products can be
expressed by the following formula:
IMD fa fb Log
Amplitude at fa fb
Amplitude at fa
±
()
=
±
()
20
Peak Harmonic or Spurious Noise
The peak harmonic or spurious noise is the largest spec-
tral component excluding the input signal and DC.
This
value is expressed in decibels relative to the RMS value of
a full-scale input signal.
Full-Power and Full-Linear Bandwidth
The full-power bandwidth is that input frequency at which
the amplitude of the reconstructed fundamental is
reduced by 3dB for a full-scale input signal.
The full-linear bandwidth is the input frequency at which
the S/(N + D) has dropped to 68dB for the LTC1851 (11
effective bits) or 56dB for the LTC1850 (9 effective bits).
The LTC1850/LTC1851 have been designed to optimize
input bandwidth, allowing the ADC to undersample input
signals with frequencies above the converter’s Nyquist
frequency. The noise floor stays very low at high frequen-
cies; S/(N + D) becomes dominated by distortion at
frequencies far beyond Nyquist.
ANALOG INPUT MULTIPLEXER
The analog input multiplexer is controlled using the single-
ended/differential pin (DIFF), three MUX address pins (A2,
A1, A0), the unipolar/bipolar pin (UNI/BIP) and the gain
select pin (PGA). The single-ended/differential pin (DIFF)
allows the user to configure the MUX as eight single-
ended channels relative to the analog input common pin
(COM) when DIFF is low or as four differential pairs (CH0
and CH1, CH2 and CH3, CH4 and CH5, CH6 and CH7) when
DIFF is high. The channels (and polarity in the differential
case) are selected using the MUX address inputs as shown
in Table 1. Unused inputs (including the COM in the
differential case) should be grounded to prevent noise
coupling.
Table 1. Multiplexer Address Table
MUX ADDRESS SINGLE-ENDED CHANNEL SELECTION
DIFF A2 A1 A0 CH0 CH1 CH2 CH3 CH4 CH5 CH6 CH7 COM
0000+
0001 +
0010 +
0011 +
0100 +
0101 +
0110 +
0111 +
MUX ADDRESS DIFFERENTIAL CHANNEL SELECTION
DIFF A2 A1 A0 CH0 CH1 CH2 CH3 CH4 CH5 CH6 CH7 COM
1000+ *
1001 + *
1010 + *
1011 + *
1100 + *
1101 + *
1110 + *
1111 + *
*Not used in differential mode. Connect to GND.
In addition to selecting the MUX channel, the
LTC1850/
LTC1851 also allows the user to select between two gains
and unipolar or bipolar inputs for a total of four input
spans. PGA high selects a gain of 1 (the input span is equal
to the voltage on REFCOMP). PGA low selects a gain of 2
where the input span is equal to half of the voltage on
REFCOMP. UNI/BIP low selects a unipolar input span,
UNI/BIP high selects a bipolar input span. Table 2 summa-
rizes the possible input spans.
15
LTC1850/LTC1851
18501f
Table 2. Input Span Table
INPUT SPAN
UNI/BIP PGA REFCOMP = 4.096V
0 0 0 – REFCOMP/2 0 – 2.048V
0 1 0 – REFCOMP 0 – 4.096V
10±REFCOMP/4 ±1.024V
11±REFCOMP/2 ±2.048V
It should be noted that the bipolar input span of the
LTC1850/LTC1851 does not allow negative inputs with
respect to ground. The LTC1850/LTC1851 have a unique
differential sample-and-hold circuit that allows rail-to-rail
inputs.
The ADC will always convert the difference of the
“+” and “–” inputs independent of the common mode
voltage.
The common mode rejection holds up to high
frequencies.
The only requirement is that both inputs can
not exceed the V
DD
power supply voltage or ground. When
a bipolar input span is selected the “+” input can swing
±full scale relative to the “–” input but neither input can
exceed V
DD
or go below ground.
Integral nonlinearity errors (INL) and differential nonlin-
earity errors (DNL) are
independent of the common mode
voltage, however, the bipolar zero error (BZE) will vary.
The change in BZE is typically less than 0.1% of the
common mode voltage.
Some AC applications may have their performance lim-
ited by distortion. The ADC and many other circuits exhibit
higher distortion when signals approach the supply or
ground. THD will degrade as the inputs approach either
power supply rail. Distortion can be reduced by reducing
the signal amplitude and keeping the common mode
voltage at approximately midsupply.
Driving the Analog Inputs
The inputs of the
LTC1850/
LTC1851 are easy to drive.
Each of the analog inputs can be used as a single-ended
input relative to the input common pin (CH0-COM, CH1-
COM, etc.) or in pairs (CH0 and CH1, CH2 and CH3, CH4
and CH5, CH6 and CH7) for differential inputs. Regardless
of the MUX configuration, the “+” and “–” inputs are
sampled at the same instant. Any unwanted signal that is
common mode to both inputs will be reduced by the
common mode rejection of the sample-and-hold circuit.
The inputs draw only one small current spike while charg-
ing the sample-and-hold capacitors at the end of conver-
sion.
During conversion, the analog inputs draw only a
small leakage current.
If the source impedance of the
driving circuit is low, then the
LTC1850/
LTC1851 inputs
can be driven directly.
As source impedance increases, so
will acquisition time.
For minimum acquisition time with
high source impedance, a buffer amplifier should be used.
The only requirement is that the amplifier driving the
analog input(s) must settle after the small current spike
before the next conversion starts (settling time must be
150ns for full throughput rate).
Choosing an Input Amplifier
Choosing an input amplifier is easy if a few requirements
are taken into consideration. First, to limit the magnitude
of the voltage spike seen by the amplifier from charging
the sampling capacitor, choose an amplifier that has a low
output impedance (<100) at the closed-loop bandwidth
frequency. For example, if an amplifier is used in a gain of
+1 and has a unity-gain bandwidth of 50MHz, then the
output impedance at 50MHz should be less than 100.
The second requirement is that the closed-loop bandwidth
must be greater than 20MHz to ensure adequate small-
signal settling for full throughput rate. The following list is
a summary of the op amps that are suitable for driving the
LTC1850/
LTC1851, more detailed information is available
in the Linear Technology Databooks, the LinearView
TM
CD-ROM and on our web site at www.linear-tech.com.
LT
®
1360: 50MHz Voltage Feedback Amplifier. ±2.5V to
±15V supplies. 5mA supply current. Low distortion.
LT1363: 70MHz Voltage Feedback Amplifier. ±2.5V to
±15V supplies. 7.5mA supply current. Low distortion.
LT1364/LT1365: Dual and Quad 70MHz Voltage Feedback
Amplifiers. ±2.5V to ±15V supplies. 7.5mA supply current
per amplifier. Low distortion.
APPLICATIO S I FOR ATIO
WUUU
LinearView is a trademark of Linear Technology Corporation.

LTC1850IFW#TRPBF

Mfr. #:
Manufacturer:
Analog Devices Inc.
Description:
Analog to Digital Converters - ADC 10-bit, 8-ch. Parallel 1.25Msps ADC
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union