NCP5424
http://onsemi.com
16
R
SENSE
0.070 V
I
LIMIT
In a high current supply, the sense resistor will be a very
low value, typically less than 10 m. Such a resistor can be
either a discrete component or a PCB trace. The resistance
value of a discrete component can be more precise than a
PCB trace, but the cost is also greater.
Setting the current limit using an external sense resistor is
very precise because all the values can be designed to
specific tolerances. However, the disadvantage of using a
sense resistor is its additional constant power loss and heat
generation.
Inductor ESR. Another means of sensing current is to use
the intrinsic resistance of the inductor. A model of an
inductor reveals that the windings of an inductor have an
effective series resistance (ESR).
The voltage drop across the inductor ESR can be
measured with a simple parallel circuit: an RC integrator. If
the value of R
S1
and C are chosen such that:
L
ESR
R
S1
C
then the voltage measured across the capacitor C will be:
V
C
ESR I
LIM
Selecting Components.
Select the capacitor C first. A
value of 0.1 F is recommended. The value of R
S1
can be
selected according to:
R
S1
1
ESR C
Typical values for inductor ESR range in the low m;
consult manufacturers datasheet for specific details.
Selection of components at these values will result in a
current limit of:
I
LIM
0.070 V
ESR
Figure 9. Inductor ESR Current Sensing
GATE(H)
V
CC
Co
GATE(L)
IS+
IS−
RS1
C
ESR
L
Given an ESR value of 3.5 m, the current limit becomes
20 A. If an increased current limit is required, a resistor
divider can be added.
The advantages of setting the current limit by using the
winding resistance of the inductor are that efficiency is
maximized and heat generation is minimized. The tolerance
of the inductor ESR must be factored into the design of the
current limit. Finally, one or two more components are
required for this approach than with resistor sensing.
Adding External Slope Compensation
Today’s voltage regulators are expected to meet very
stringent load transient requirements. One of the key factors
in achieving tight dynamic voltage regulation is low ESR.
Low ESR at the regulator output results in low output
voltage ripple. The consequence is, however, that very little
voltage ramp exists at the control IC feedback pin (V
FB
),
resulting in increased regulator sensitivity to noise and the
potential for loop instability. In applications where the
internal slope compensation is insufficient, the performance
of the NCP5424−based regulator can be improved through
the addition of a fixed amount of external slope
compensation at the output of the PWM Error Amplifier (the
COMP pin) during the regulator off−time. Referring to
Figure 8, the amount of voltage ramp at the COMP pin is
dependent on the gate voltage of the lower (synchronous)
FET and the value of resistor divider formed by R1and R2.
V
SLOPECOMP
V
GATE(L)
R2
R1 R2
(1 e
−t
)
where:
V
SLOPECOMP
= amount of slope added;
V
GATE(L)
= lower MOSFET gate voltage;
R1, R2 = voltage divider resistors;
t = t
ON
or t
OFF
(switch off−time);
τ = RC constant determined by C1 and the parallel
combination of R1, R2 neglecting the low driver
output impedance.
Figure 10. Small RC Filter Provides the
Proper Voltage Ramp at the Beginning of
Each On−Time Cycle
To Synchronous
FET
C1
R2
R1
NCP5424
GATE(L)
COMP
C
COMP
The artificial voltage ramp created by the slope
compensation scheme results in improved control loop
stability provided that the RC filter time constant is smaller
than the off−time cycle duration (time during which the
lower MOSFET is conducting). It is important that the series
combination of R1 and R2 is high enough in resistance to
avoid loading the GATE(L) pin. Also, C1 should be very
small (less than a few nF) to avoid heating the part.
NCP5424
http://onsemi.com
17
EMI MANAGEMENT
As a consequence of large currents being turned on and off
at high frequency, switching regulators generate noise as a
consequence of their normal operation. When designing for
compliance with EMI/EMC regulations, additional
components may be added to reduce noise emissions. These
components are not required for regulator operation and
experimental results may allow them to be eliminated. The
input filter inductor may not be required because bulk filter
and bypass capacitors, as well as other loads located on the
board will tend to reduce regulator di/dt effects on the circuit
board and input power supply. Placement of the power
component to minimize routing distance will also help to
reduce emissions.
LAYOUT GUIDELINES
When laying out the CPU buck regulator on a printed
circuit board, the following checklist should be used to
ensure proper operation of the NCP5424.
1. Rapid changes in voltage across parasitic capacitors
and abrupt changes in current in parasitic inductors
are major concerns for a good layout.
2. Keep high currents out of sensitive ground
connections.
3. Avoid ground loops as they pick up noise. Use star or
single point grounding.
4. For high power buck regulators on double−sided
PCB’s a single ground plane (usually the bottom) is
recommended.
5. Even though double sided PCB’s are usually
sufficient for a good layout, four−layer PCB’s are the
optimum approach to reducing susceptibility to
noise. Use the two internal layers as the power and
GND planes, the top layer for power connections and
component vias, and the bottom layers for the noise
sensitive traces.
6. Keep the inductor switching node small by placing
the output inductor, switching and synchronous FETs
close together.
7. The MOSFET gate traces to the IC must be short,
straight, and wide as possible.
8. Use fewer, but larger output capacitors, keep the
capacitors clustered, and use multiple layer traces
with heavy copper to keep the parasitic resistance
low.
9. Place the switching MOSFET as close to the input
capacitors as possible.
10. Place the output capacitors as close to the load as
possible.
11. Place the COMP capacitor as close as possible to the
COMP pin.
12. Connect the filter components of the following pins:
R
OSC,
V
FB
, V
OUT
, and COMP to the GND pin with a
single trace, and connect this local GND trace to the
output capacitor GND.
13. Place the V
CC
bypass capacitors as close as possible
to the IC.
14. Place the R
OSC
resistor as close as possible to the
R
OSC
pin.
15. Include provisions for 100−100pF capacitor across
each resistor of the feedback network to improve
noise immunity and add COMP.
16. Assign the output with lower duty cycle to channel 2,
which has better noise immunity.
NCP5424
http://onsemi.com
18
PACKAGE DIMENSIONS
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS A AND B DO NOT INCLUDE
MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)
PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.127 (0.005) TOTAL
IN EXCESS OF THE D DIMENSION AT
MAXIMUM MATERIAL CONDITION.
18
16 9
SEATING
PLANE
F
J
M
R
X 45
G
8 PLP
−B−
−A−
M
0.25 (0.010) B
S
−T−
D
K
C
16 PL
S
B
M
0.25 (0.010) A
S
T
DIM MIN MAX MIN MAX
INCHESMILLIMETERS
A 9.80 10.00 0.386 0.393
B 3.80 4.00 0.150 0.157
C 1.35 1.75 0.054 0.068
D 0.35 0.49 0.014 0.019
F 0.40 1.25 0.016 0.049
G 1.27 BSC 0.050 BSC
J 0.19 0.25 0.008 0.009
K 0.10 0.25 0.004 0.009
M 0 7 0 7
P 5.80 6.20 0.229 0.244
R 0.25 0.50 0.010 0.019

SOIC−16
D SUFFIX
CASE 751B−05
ISSUE J
ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada
Japan: ON Semiconductor, Japan Customer Focus Center
2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051
Phone: 81−3−5773−3850
NCP5424/D
V
2
is a trademark of Switch Power, Inc.
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
P.O. Box 61312, Phoenix, Arizona 85082−1312 USA
Phone: 480−829−7710 or 800−344−3860 Toll Free USA/Canada
Fax: 480−829−7709 or 800−344−3867 Toll Free USA/Canada
Email: orderlit@onsemi.com
ON Semiconductor Website: http://onsemi.com
Order Literature: http://www.onsemi.com/litorder
For additional information, please contact your
local Sales Representative.

NCP5424D

Mfr. #:
Manufacturer:
ON Semiconductor
Description:
IC REG CTRLR BUCK 16SOIC
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union

Products related to this Datasheet