ADN2815 Data Sheet
Rev. C | Page 12 of 24
THEORY OF OPERATION
The ADN2815 is a delay- and phase-locked loop circuit for
clock recovery and data retiming from an NRZ encoded data
stream. The phase of the input data signal is tracked by two
separate feedback loops that share a common control voltage. A
high speed delay-locked loop path uses a voltage controlled
phase shifter to track the high frequency components of input
jitter. A separate phase control loop, comprised of the VCO,
tracks the low frequency components of input jitter. The initial
frequency of the VCO is set by yet a third loop, which compares
the VCO frequency with the input data frequency and sets the
coarse tuning voltage. The jitter tracking phase-locked loop
(PLL) controls the VCO by the fine-tuning control.
The delay and phase loops together track the phase of the input
data signal. For example, when the clock lags input data, the
phase detector drives the VCO to a higher frequency and
increases the delay through the phase shifter; both of these
actions serve to reduce the phase error between the clock and
data. The faster clock picks up phase, while the delayed data
loses phase. Because the loop filter is an integrator, the static
phase error is driven to zero.
Another view of the circuit is that the phase shifter implements
the zero required for frequency compensation of a second-order
phase-locked loop, and this zero is placed in the feedback path
and, thus, does not appear in the closed-loop transfer function.
Jitter peaking in a conventional second-order phase-locked loop
is caused by the presence of this zero in the closed-loop transfer
function. Because this circuit has no zero in the closed-loop
transfer, jitter peaking is minimized.
The delay and phase loops together simultaneously provide
wideband jitter accommodation and narrow-band jitter
filtering. The linearized block diagram in Figure 13 shows that
the jitter transfer function, Z(s)/X(s), is a second-order low-pass
providing excellent filtering. Note that the jitter transfer has no
zero, unlike an ordinary second-order phase-locked loop. This
means that the main PLL has virtually zero jitter peaking (see
Figure 14). This makes this circuit ideal for signal regenerator
applications where jitter peaking in a cascade of regenerators
can contribute to hazardous jitter accumulation.
The error transfer, e(s)/X(s), has the same high-pass form as an
ordinary phase-locked loop. This transfer function is free to be
optimized to give excellent wideband jitter accommodation,
because the jitter transfer function, Z(s)/X(s), provides the
narrow-band jitter filtering.
04952-0-017
X(s)
Z(s)
RECOVERED
CLOCK
e(s)
INPU
T
DATA
d/sc
psh
o/s
1/n
d = PHASE DETECTOR GAI
N
o = VCO GAIN
c = LOOP INTEGRATO
R
psh = PHASE SHIFTER GAI
N
n = DIVIDE RATI
O
=
1
cn
do
s
2
+
n psh
o
s+ 1
Z(s)
X(s)
JITTER TRANSFER FUNCTION
=
s
2
s
2
d psh
c
s++
do
cn
e(s)
X(s)
TRACKING ERROR TRANSFER FUNCTION
Figure 13. ADN2815 PLL/DLL Architecture
ADN2815
Z(s)
X(s)
04952-0-018
FREQUENCY (kHz)
JITTER PEAKING
IN ORDINARY PLL
JITTER GAIN (dB)
o
n psh
d psh
c
Figure 14. ADN2815 Jitter Response vs. Conventional PLL
The delay and phase loops contribute to overall jitter accom-
modation. At low frequencies of input jitter on the data signal,
the integrator in the loop filter provides high gain to track large
jitter amplitudes with small phase error. In this case, the VCO is
frequency modulated and jitter is tracked as in an ordinary
phase-locked loop. The amount of low frequency jitter that can
be tracked is a function of the VCO tuning range. A wider
tuning range gives larger accommodation of low frequency
jitter. The internal loop control voltage remains small for small
phase errors; therefore, the phase shifter remains close to the
center of its range and thus contributes little to the low
frequency jitter accommodation.
Data Sheet ADN2815
Rev. C | Page 13 of 24
At medium jitter frequencies, the gain and tuning range of the
VCO are not large enough to track input jitter. In this case, the
VCO control voltage becomes large and saturates, and the VCO
frequency dwells at one extreme of its tuning range or at the
other. The size of the VCO tuning range, therefore, has only a
small effect on the jitter accommodation. The delay-locked loop
control voltage is now larger, and therefore the phase shifter
takes on the burden of tracking the input jitter. The phase
shifter range, in UI, can be seen as a broad plateau on the jitter
tolerance curve. The phase shifter has a minimum range of 2 UI
at all data rates.
The gain of the loop integrator is small for high jitter
frequencies; therefore, larger phase differences are needed to
make the loop control voltage large enough to tune the range of
the phase shifter. Large phase errors at high jitter frequencies
cannot be tolerated. In this region, the gain of the integrator
determines the jitter accommodation. Because the gain of the
loop integrator declines linearly with frequency, jitter accom-
modation is lower with higher jitter frequency. At the highest
frequencies, the loop gain is very small, and little tuning of the
phase shifter can be expected. In this case, jitter accommodation is
determined by the eye opening of the input data, the static
phase error, and the residual loop jitter generation. The jitter
accommodation is roughly 0.5 UI in this region. The corner
frequency between the declining slope and the flat region is
the closed loop bandwidth of the delay-locked loop, which is
roughly 1.5 MHz at 1.25 Gb/s.
ADN2815 Data Sheet
Rev. C | Page 14 of 24
FUNCTIONAL DESCRIPTION
FREQUENCY ACQUISITION
The ADN2815 acquires frequency from the data over a range of
data frequencies from 10 Mb/s to 1.25 Gb/s. The lock detector
circuit compares the frequency of the VCO and the frequency
of the incoming data. When these frequencies differ by more
than 1000 ppm, LOL is asserted. This initiates a frequency
acquisition cycle. The VCO frequency is reset to the bottom of
its range, which is 10 MHz. The frequency detector then
compares this VCO frequency and the incoming data frequency
and increments the VCO frequency, if necessary. Initially, the
VCO frequency is incremented in large steps to aid fast acquisi-
tion. As the VCO frequency approaches the data frequency, the
step size is reduced until the VCO frequency is within 250 ppm
of the data frequency, at which point LOL is deasserted.
Once LOL is deasserted, the frequency-locked loop is turned
off. The PLL/DLL pulls in the VCO frequency the rest of the
way until the VCO frequency equals the data frequency.
The frequency loop requires a single external capacitor between
CF1 and CF2, Pin 14 and Pin 15. A 0.47 µF ± 20%, X7R ceramic
chip capacitor with < 10 nA leakage current is recommended.
Leakage current of the capacitor can be calculated by dividing
the maximum voltage across the 0.47 µF capacitor, ~3 V, by the
insulation resistance of the capacitor. The insulation resistance
of the 0.47 µF capacitor should be greater than 300 MΩ.
INPUT BUFFER
The input buffer has differential inputs (PIN/NIN), which are
internally terminated with 50 Ω to an on-chip voltage reference
(VREF = 2.5 V typically). The minimum differential input level
required to achieve a BER of 10
10
is 200 mV p-p.
LOCK DETECTOR OPERATION
The lock detector on the ADN2815 has three modes of
operation: normal mode, REFCLK mode, and static LOL mode.
Normal Mode
In normal mode, the ADN2815 is a continuous rate CDR that
locks onto any data rate from 10 Mb/s to 1.25 Gb/s without the
use of a reference clock as an acquisition aid. In this mode, the
lock detector monitors the frequency difference between the
VCO and the input data frequency, and deasserts the loss-of-
lock signal, which appears on Pin 16 (LOL), when the VCO is
within 250 ppm of the data frequency. This enables the D/PLL,
which pulls the VCO frequency in the remaining amount and
acquires phase lock. Once locked, if the input frequency error
exceeds 1000 ppm (0.1%), the loss-of-lock signal is reasserted
and control returns to the frequency loop, which begins a new
frequency acquisition starting at the lowest point in the VCO
operating range, 10 MHz. The LOL pin remains asserted until
the VCO locks onto a valid input data stream to within
250 ppm frequency error. This hysteresis is shown in Figure 15.
04952-0-020
LOL
0
250 250 1000 f
VCO
ERROR
(ppm)
1000
1
Figure 15. Transfer Function of LOL
LOL Detector Operation Using a Reference Clock
In REFCLK mode, a reference clock is used as an acquisition aid
to lock the ADN2815 VCO. Lock-to-reference mode is enabled
by setting CTRLA[0] to 1. The user also needs to write to the
CTRLA[7:6] and CTRLA[5:2] bits to set the reference
frequency range and the divide ratio of the data rate with
respect to the reference frequency. For more details, see the
Reference Clock (Optional) section. In this mode, the lock
detector monitors the difference in frequency between the
divided down VCO and the divided down reference clock. The
loss-of-lock signal, which appears on Pin 16 (LOL), is
deasserted when the VCO is within 250 ppm of the desired
frequency. This enables the D/PLL, which pulls the VCO
frequency in the remaining amount with respect to the input
data and acquires phase lock. Once locked, if the input
frequency error exceeds 1000 ppm (0.1%), the loss-of-lock
signal is reasserted and control returns to the frequency loop,
which reacquires with respect to the reference clock. The LOL
pin remains asserted until the VCO frequency is within
250 ppm of the desired frequency. This hysteresis is shown in
Figure 15.
Static LOL Mode
The ADN2815 implements a static LOL feature, which indicates
if a loss-of-lock condition has ever occurred and remains
asserted, even if the ADN2815 regains lock, until the static LOL
bit is manually reset. The I
2
C register bit, MISC[4], is the static
LOL bit. If there is ever an occurrence of a loss-of-lock
condition, this bit is internally asserted to logic high. The
MISC[4] bit remains high even after the ADN2815 has
reacquired lock to a new data rate. This bit can be reset by
writing a 1 followed by 0 to I
2
C Register Bit CTRLB[6]. Once
reset, the MISC[4] bit remains deasserted until another loss-of-
lock condition occurs.
Writing a 1 to I
2
C Register Bit CTRLB[7] causes the LOL pin,
Pin 16, to become a static LOL indicator. In this mode, the LOL
pin mirrors the contents of the MISC[4] bit and has the
functionality described in the previous paragraph.

ADN2815ACPZ

Mfr. #:
Manufacturer:
Analog Devices Inc.
Description:
Timers & Support Products Anyrate 10 Mbps to 2.7Gbps PA/CDR
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union

Products related to this Datasheet