MAX1277/MAX1279
True-Differential Analog Input T/H
The equivalent circuit of Figure 4 shows the input archi-
tecture of the MAX1277/MAX1279, which is composed
of a T/H, a comparator, and a switched-capacitor digi-
tal-to-analog converter (DAC). The T/H enters its track-
ing mode on the 14th SCLK rising edge of the previous
conversion. Upon power-up, the T/H enters its tracking
mode immediately. The positive input capacitor is con-
nected to AIN+. The negative input capacitor is con-
nected to AIN-. The T/H enters its hold mode on the
falling edge of CNVST and the difference between the
sampled positive and negative input voltages is convert-
ed. The time required for the T/H to acquire an input sig-
nal is determined by how quickly its input capacitance is
charged. If the input signal’s source impedance is high,
the acquisition time lengthens. The acquisition time,
t
ACQ
, is the minimum time needed for the signal to be
acquired. It is calculated by the following equation:
t
ACQ
9 × (RS + R
IN
) × 16pF
where R
IN
= 200Ω, and RS is the source impedance of
the input signal.
Note: t
ACQ
is never less than 125ns and any source
impedance below 12Ω does not significantly affect the
ADC’s AC performance.
Input Bandwidth
The ADC’s input-tracking circuitry has a 15MHz small-
signal bandwidth, making it possible to digitize high-
speed transient events and measure periodic
signals with bandwidths exceeding the ADC’s sampling
rate by using undersampling techniques. To avoid
high-frequency signals being aliased into the frequency
band of interest, anti-alias filtering is recommended.
Analog Input Protection
Internal protection diodes that clamp the analog input
to V
DD
and GND allow the analog input pins to swing
from GND - 0.3V to V
DD
+ 0.3V without damage. Both
inputs must not exceed V
DD
or be lower than GND for
accurate conversions.
Serial Interface
Initialization After Power-Up
and Starting a Conversion
Upon initial power-up, the MAX1277/MAX1279 require a
complete conversion cycle to initialize the internal cali-
bration. Following this initial conversion, the part is ready
for normal operation. This initialization is only required
after a hardware power-up sequence and is not required
after exiting partial or full power-down mode.
To start a conversion, pull CNVST low. At CNVST’s
falling edge, the T/H enters its hold mode and a conver-
sion is initiated. SCLK runs the conversion and the data
can then be shifted out serially on DOUT.
1.5Msps, Single-Supply, Low-Power, True-
Differential, 12-Bit ADCs with Internal Reference
10 ______________________________________________________________________________________
DOUT
MODE
SCLK
CNVST
DOUT GOES HIGH IMPEDANCE ONCE CNVST GOES HIGH
CONVST MUST GO HIGH AFTER THE 3RD BUT BEFORE THE 14TH SCLK RISING EDGE
ONE 8-BIT TRANSFER
1ST SCLK RISING EDGE
PPD
0 0 0 D11 D10 D9 D8 D7
NORMAL
REF
ENABLED (2.048V)
Figure 6. SPI Interface—Partial Power-Down Mode
Figure 5. Interface-Timing Sequence
t
ACQUIRE
CONTINUOUS-CONVERSION
SELECTION WINDOW
CNVST
t
SETUP
DOUT
SCLK
41412 83 16
HIGH IMPEDANCE
D1D4D6 D5D9 D8 D7D11 D10
POWER-MODE SELECTION WINDOW
D0D2D3
Timing and Control
Conversion-start and data-read operations are con-
trolled by the CNVST and SCLK digital inputs. Figures 1
and 5 show timing diagrams, which outline the serial-
interface operation.
A CNVST falling edge initiates a conversion sequence;
the T/H stage holds the input voltage, the ADC begins
to convert, and DOUT changes from high impedance to
logic low. SCLK is used to drive the conversion
process, and it shifts data out as each bit of the conver-
sion is determined.
SCLK begins shifting out the data after the 4th rising
edge of SCLK. DOUT transitions t
DOUT
after each
SCLK’s rising edge and remains valid 4ns (t
DHOLD
)
after the next rising edge. The 4th rising clock edge
produces the MSB of the conversion at DOUT, and the
MSB remains valid 4ns after the 5th rising edge. Since
there are 12 data bits and 3 leading zeros, at least 16
rising clock edges are needed to shift out these bits.
For continuous operation, pull CNVST high between the
14th and the 16th SCLK rising edges. If CNVST stays
low after the falling edge of the 16th SCLK cycle, the
DOUT line goes to a high-impedance state on either
CNVST’s rising edge or the next SCLK’s rising edge.
Partial Power-Down and
Full Power-Down Modes
Power consumption can be reduced significantly by plac-
ing the MAX1277/MAX1279 in either partial power-down
mode or full power-down mode. Partial power-down
mode is ideal for infrequent data sampling and fast wake-
up time applications. Pull CNVST high after the 3rd SCLK
rising edge and before the 14th SCLK rising edge to
enter and stay in partial power-down mode (see Figure
6). This reduces the supply current to 2mA. While in par-
tial power-down mode, the reference remains enabled to
allow valid conversions once the IC is returned to normal
mode. Drive CNVST low and allow at least 14 SCLK
cycles to elapse before driving CNVST high to exit partial
power-down mode.
Full power-down mode is ideal for infrequent data sam-
pling and very low supply current applications. The
MAX1277/MAX1279 have to be in partial power-down
mode to enter full power-down mode. Perform the
SCLK/CNVST sequence described above to enter par-
tial power-down mode. Then repeat the same
sequence to enter full power-down mode (see Figure
7). Drive CNVST low, and allow at least 14 SCLK cycles
to elapse before driving CNVST high to exit full power-
down mode. While in full power-down mode, the refer-
ence is disabled to minimize power consumption. Be
sure to allow at least 2ms recovery time after exiting full
power-down mode for the reference to settle. In
partial/full power-down mode, maintain a logic low or a
logic high on SCLK to minimize power consumption.
Transfer Function
Figure 8 shows the unipolar transfer function for the
MAX1277. Figure 9 shows the bipolar transfer function for
the MAX1279. The MAX1277 output is straight binary,
while the MAX1279 output is two’s complement.
Applications Information
Internal Reference
The MAX1277/MAX1279 have an on-chip voltage refer-
ence trimmed to 2.048V. The internal reference output
is connected to REF and also drives the internal capac-
itive DAC. The output can be used as a reference volt-
age source for other components and can source up to
2mA. Bypass REF with a 0.01µF capacitor and a 4.7µF
capacitor to RGND.
The internal reference is continuously powered up dur-
ing both normal and partial power-down modes. In full
power-down mode, the internal reference is disabled.
Be sure to allow at least 2ms recovery time after hard-
ware power-up or exiting full power-down mode for the
reference to reach its intended value.
MAX1277/MAX1279
1.5Msps, Single-Supply, Low-Power, True-
Differential, 12-Bit ADCs with Internal Reference
______________________________________________________________________________________ 11
Figure 7. SPI Interface—Full Power-Down Mode
1ST SCLK RISING EDGE 1ST SCLK RISING EDGE
0 0 0 D11 D10 D9 D8 D7
DOUT
MODE
SCLK
CNVST
000000
0
FPDRECOVERYPPDNORMAL
0
DOUT ENTERS TRI-STATE ONCE CNVST GOES HIGH
EXECUTE PARTIAL POWER-DOWN TWICE
FIRST 8-BIT TRANSFER
SECOND 8-BIT TRANSFER
REF
ENABLED (2.048V)
DISABLED
MAX1277/MAX1279
How to Start a Conversion
An analog-to-digital conversion is initiated by CNVST,
clocked by SCLK, and the resulting data is clocked out on
DOUT by SCLK. With SCLK idling high or low, a falling
edge on CNVST begins a conversion. This causes the
analog input stage to transition from track to hold mode,
and for DOUT to transition from high impedance to being
actively driven low. A total of 16 SCLK cycles are required
to complete a normal conversion. If CNVST is low during
the 16th falling SCLK edge, DOUT returns to high imped-
ance on the next rising edge of CNVST or SCLK, enabling
the serial interface to be shared by multiple devices. If
CNVST returns high after the 14th, but before the 16th
SCLK rising edge, DOUT remains active so continuous
conversions can be sustained. The highest throughput is
achieved when performing continuous conversions. Figure
10 illustrates a conversion using a typical serial interface.
Connection to
Standard Interfaces
The MAX1277/MAX1279 serial interface is fully compati-
ble with SPI/QSPI and MICROWIRE (see Figure 11). If a
serial interface is available, set the CPU’s serial interface
in master mode so the CPU generates the serial clock.
Choose a clock frequency up to 24MHz.
SPI and MICROWIRE
When using SPI or MICROWIRE, the MAX1277/ MAX1279
are compatible with all four modes programmed with the
CPHA and CPOL bits in the SPI or MICROWIRE control
register. Conversion begins with a CNVST falling edge.
DOUT goes low, indicating a conversion is in progress.
Two consecutive 1-byte reads are required to get the full
12 bits from the ADC. DOUT transitions on SCLK rising
edges. DOUT is guaranteed to be valid t
DOUT
later and
remains valid until t
DHOLD
after the following SCLK rising
edge. When using CPOL = 0 and CPHA = 0, or CPOL = 1
and CPHA = 1, the data is clocked into the µP on the fol-
lowing rising edge. When using CPOL = 0 and CPHA = 1,
or CPOL = 1 and CPHA = 0, the data is clocked into the
µP on the next falling edge. See Figure 11 for connections
and Figures 12 and 13 for timing. See the
Timing
Characteristics
section to determine the best mode to use.
QSPI
Unlike SPI, which requires two 1-byte reads to acquire
the 12 bits of data from the ADC, QSPI allows the mini-
mum number of clock cycles necessary to clock in the
data. The MAX1277/MAX1279 require 16 clock cycles
from the µP to clock out the 12 bits of data. Figure 14
shows a transfer using CPOL = 1 and CPHA = 1. The
conversion result contains three zeros, followed by the
12 data bits, and a trailing zero with the data in MSB-
1.5Msps, Single-Supply, Low-Power, True-
Differential, 12-Bit ADCs with Internal Reference
12 ______________________________________________________________________________________
OUTPUT CODE
FULL-SCALE
TRANSITION
111...111
12 3
0
FS
FS - 3/2 LSB
FS = V
REF
DIFFERENTIAL INPUT
VOLTAGE (LSB)
1 LSB =
V
REF
4096
111...110
111...101
000...011
000...010
000...001
000...000
ZS = 0
Figure 8. Unipolar Transfer Function (MAX1277 Only)
OUTPUT CODE
FULL-SCALE
TRANSITION
FS0-FS
FS - 3/2 LSB
DIFFERENTIAL INPUT
VOLTAGE (LSB)
011...111
011...110
000...010
000...001
000...000
111...111
111...110
111...101
100...001
100...000
1 LSB =
V
REF
4096
FS =
V
REF
2
- FS =
-V
REF
2
ZS = 0
Figure 9. Bipolar Transfer Function (MAX1279 Only)

MAX1279BETC+

Mfr. #:
Manufacturer:
Maxim Integrated
Description:
Analog to Digital Converters - ADC 12-Bit 1.5Msps 3.6V Precision ADC
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union