10
Figure 1. I
IN
vs. V
IN
. Figure 2. I
DD1
vs. V
IN
.
Figure 3. I
DD2
vs. V
IN
.
Figure 4. Clock Frequency vs. Temperature. Figure 5. INL (Bits) vs. Temperature Figure 6. INL (%) vs. Temperature
Figure 7. Oset Change vs. Temperature
Figure 8. V
REF
Change vs. Temperature
Figure 9. SNR vs. Temperature
I
DD1
- mA
V
IN
- mV
9.0
8.5
-200
10.5
200
8.0
9.5
-40
o
C
10.0
-400 4000
25
o
C
85
o
C
I
DD2
- mA
V
IN
- mV
8.6
8.2
-200
9.4
200
8.0
8.8
-40
o
C
9.2
-400 4000
25
o
C
85
o
C
8.4
9.0
CLOCK FREQUENCY - MHz
TEMPERATURE -
o
C
9.2
-15
10.0
60
8.6
9.4
9.8
-40 8510 35
8.8
9.0
9.6
V
DD1
= 4.5 V
V
DD1
= 5.0 V
V
DD1
= 5.5 V
INL-LSB
TEMPERATURE -
o
C
4
-15
7
60
2
5
V
DD1
= 4.5 V
6
-40 8510 35
V
DD1
= 5.0 V
V
DD1
= 5.5 V
3
INL-%
TEMPERATURE - ˚C
0.012
-15
0.02
60
0.006
0.014
V
DD1
= 4.5 V
0.016
-40 8510 35
V
DD1
= 5.0 V
V
DD1
= 5.5 V
0.008
0.018
0.01
OFFSET CHANGE - µV
TEMPERATURE - ˚C
-50
-15
150
60
-150
0
V
DD1
= 4.5 V
100
-40 8510 35
V
DD1
= 5.0 V
V
DD1
= 5.5 V
-100
50
V
REF
CHANGE - %
TEMPERATURE - ˚C
0
-15
0.8
60
-0.4
0.2
V
DD1
= 4.5 V
0.6
-40 8510 35
V
DD1
= 5.0 V
V
DD1
= 5.5 V
-0.2
0.4
I
IN
- mA
V
IN
- V
-4
-5
-4
1
0
-9
-2
0
-6 6-2 2
-1
-3
-8
-6
-7
4
SNR
TEMPERATURE - ˚C
64
62
-15
68
60
61
65
V
DD1
= 4.5 V
67
-40 8510 35
V
DD1
= 5.0 V
V
DD1
= 5.5 V
63
66
11
Figure 10. SNR vs. Conversion Mode. Figure 11. Eective Resolution vs. Conversion
Mode.
Figure 12. Conversion Time vs. Conversion Mode.
Figure 13. Signal Delay vs. Conversion Mode. Figure 14. Over-Range and Threshold Detect
Times.
Figure 15. Signal Bandwidth vs. Conversion
Mode.
SNR
CONVERSION MODE #
60
2
80
3
45
70
75
55
50
65
1
4
5
CONVERSION TIME - µs
CONVERSION MODE #
100
80
2
200
3
0
140
PRE-TRIGGER
MODE 2
180
1
160
120
60
40
20
PRE-TRIGGER
MODE 0
PRE-TRIGGER
MODE 1
4 5
SIGNAL DELAY - µs
CONVERSION MODE #
40
2
100
3
0
80
1
90
30
20
60
70
50
10
4 5
EFFECTIVE RESOLUTION (# BITS)
CONVERSION MODE #
11
2
14
3
8
12
1
13
10
9
4 5
2 µs/DIV.
V
IN+
(200 mV/DIV.)
OVR1 (200 mV/DIV.)
THR1
(2 V/DIV.)
SIGNAL BANDWIDTH - kHz
CONVERSION MODE #
40
2
100
3
0
80
1
90
30
20
60
70
50
10
4 5
12
Applications Information
Digital Current Sensing
As shown in Figure 16, using the Isolated 2-chip A/D
converter to sense current can be as simple as connect-
ing a current-sensing resistor, or shunt, to the input and
reading output data through the 3-wire serial output
interface. By choosing the appropriate shunt resistance,
any range of current can be monitored, from less than 1
A to more than 100 A.
Figure 16. Typical Application Circuit.
R
SHUNT
0.02
INPUT
CURRENT
V
DD1
ISOLATED
+ 5 V
V
IN+
V
IN-
GND1
V
DD2
MCLK
MDAT
GND2
C1
0.1 µF
+
CDAT SCLK
CCLK V
DD
CLAT CHAN
MCLK1 SDAT
MDAT1 CS
MCLK2 THR1
MDAT2 OVR1
GND RESET
NON-ISOLATED
+ 5 V
C3
10 µF
+
HCPL-7560
3-WIRE
SERIAL
INTERFACE
C2
0.1 µF
HCPL-0872
Even better performance can be achieved by fully utiliz-
ing the more advanced features of the Isolated A/D con-
verter, such as the pre-trigger circuit, which can reduce
conversion time to less than 1µs, the fast over-range
detector for quickly detecting short circuits, dierent
conversion modes giving various resolution/speed
trade-os, oset calibration mode to eliminate initial
oset from measurements, and an adjustable threshold
detector for detecting non-short circuit overload condi-
tions.

HCPL-7560-500E

Mfr. #:
Manufacturer:
Broadcom / Avago
Description:
Optically Isolated Amplifiers Isolated Modulator
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union