8432I-101 Data Sheet
©2016 Integrated Device Technology, Inc Revision C January 8, 201613
The following component footprints are used in this layout
example: All the resistors and capacitors are size 0603.
POWER AND GROUNDING
Place the decoupling capacitors C14 and C15 as close as possible
to the power pins. If space allows, placing the decoupling capacitor
at the component side is preferred. This can reduce unwanted
inductance between the decoupling capacitor and the power pin
generated by the via.
Maximize the pad size of the power (ground) at the decoupling
capacitor. Maximize the number of vias between power (ground)
and the pads. This can reduce the inductance between the power
(ground) plane and the component power (ground) pins.
If V
CCA
shares the same power supply with V
CC
, insert the RC fi lter
R7, C11, and C16 in between. Place this RC fi lter as close to the
V
CCA
as possible.
CLOCK TRACES AND TERMINATION
The component placements, locations and orientations should be
arranged to achieve the best clock signal quality. Poor clock signal
quality can degrade the system performance or cause system failure.
In the synchronous high-speed digital system, the clock signal is
less tolerable to poor signal quality than other signals. Any ringing
on the rising or falling edge or excessive ring back can cause system
failure. The trace shape and the trace delay might be restricted by
the available space on the board and the component location. While
routing the traces, the clock signal traces should be routed fi rst and
should be locked prior to routing other signal traces.
The traces with 50Ω transmission lines TL1 and TL2
at FOUT and nFOUT should have equal delay
and run ad- jacent to each other. Avoid
sharp angles on the clock trace. Sharp
angle turns cause the characteristic impedance to
change on the transmission lines.
Keep the clock trace on same layer. Whenever possible,
avoid any vias on the clock traces. Any via on the trace
can affect the trace characteristic impedance and hence
degrade signal quality.
To prevent cross talk, avoid routing other signal traces in
parallel with the clock traces. If running parallel traces is
unavoidable, allow more space between the clock trace
and the other signal trace.
Make sure no other signal trace is routed between the
clock trace pair.
The matching termination resistors R1, R2, R3 and R4 should
be located as close to the receiver input pins as possible. Other
termination schemes can also be used but are not shown in this
example.
FIGURE 6B. PCB BOARD LAYOUT FOR 8432I-101
8432I-101 Data Sheet
©2016 Integrated Device Technology, Inc Revision C January 8, 201614
POWER CONSIDERATIONS
This section provides information on power dissipation and junction temperature for the 8432I-101.
Equations and example calculations are also provided.
1. Power Dissipation.
The total power dissipation for the 8432I-101 is the sum of the core power plus the power dissipated in the load(s).
The following is the power dissipation for V
CC
= 3.3V + 5% = 3.465V, which gives worst case results.
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.
Power (core)
MAX
= V
CC_MAX
* I
EE_MAX
= 3.465V * 120mA = 416mW
Power (outputs)
MAX
= 30mW/Loaded Output pair
If all outputs are loaded, the total power is 2 * 30mW = 60mW
Total Power
_MAX
(3.465V, with all outputs switching) = 416mW + 60mW = 476mW
2. Junction Temperature.
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the
device. The maximum recommended junction temperature for HiPerClockS
TM
devices is 125°C.
The equation for Tj is as follows: Tj = θJA * Pd_total + TA
Tj = Junction Temperature
θ
JA = Junction-to-Ambient Thermal Resistance
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)
T
A
= Ambient Temperature
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θ
JA
must be used. Assuming a
moderate air fl ow of 200 linear feet per minute and a multi-layer board, the appropriate value is 42.1°C/W per Table 9 below.
Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:
85°C + 0.476W * 42.1°C/W = 105°C. This is well below the limit of 125°C.
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air fl ow,
and the type of board (single layer or multi-layer).
θ
JA
by Velocity (Linear Feet per Minute)
0 200 500
Single-Layer PCB, JEDEC Standard Test Boards 67.8°C/W 55.9°C/W 50.1°C/W
Multi-Layer PCB, JEDEC Standard Test Boards 47.9°C/W 42.1°C/W 39.4°C/W
NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.
TABLE 9. THERMAL RESISTANCE θ
JA
FOR 32-PIN LQFP, FORCED CONVECTION
8432I-101 Data Sheet
©2016 Integrated Device Technology, Inc Revision C January 8, 201615
3. Calculations and Equations.
The purpose of this section is to derive the power dissipated into the load.
LVPECL output driver circuit and termination are shown in Figure 7.
To calculate worst case power dissipation into the load, use the following equations which assume a 50Ω load, and a termination
voltage of V
CCO
- 2V.
For logic high, V
OUT
= V
OH_MAX
= V
CCO_MAX
– 0.9V
(V
CCO_MAX
- V
OH_MAX
)
= 0.9V
For logic low, V
OUT
= V
OL_MAX
= V
CCO_MAX
– 1.7V
(V
CCO_MAX
- V
OL_MAX
)
= 1.7V
Pd_H is power dissipation when the output drives high.
Pd_L is the power dissipation when the output drives low.
Pd_H = [(V
OH_MAX
– (V
CCO_MAX
- 2V))/R
L
] * (V
CCO_MAX
- V
OH_MAX
) = [(2V - (V
CCO_MAX
- V
OH_MAX
))
/R
L
] * (V
CCO_MAX
- V
OH_MAX
) =
[(2V - 0.9V)/50Ω] * 0.9V = 19.8mW
Pd_L = [(V
OL_MAX
– (V
CCO_MAX
- 2V))/R
L
] * (V
CCO_MAX
- V
OL_MAX
) = [(2V - (V
CCO_MAX
- V
OL_MAX
))
/R
L
] * (V
CCO_MAX
- V
OL_MAX
) =
[(2V - 1.7V)/50Ω] * 1.7V = 10.2mW
Total Power Dissipation per output pair = Pd_H + Pd_L = 30mW
FIGURE 7. LVPECL DRIVER CIRCUIT AND T ERMINATION

8432DYI-101LF

Mfr. #:
Manufacturer:
IDT
Description:
Clock Synthesizer / Jitter Cleaner 2 LVPECL OUT SYNTHESIZER
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union

Products related to this Datasheet