7
PackageCharacteristics
Test
Parameter Symbol Min. Typ. Max. Units Conditions Fig. Note
Input-Output Momentary V
ISO
3750 Vrms T
A
= 25°C, 8,9
Withstand Voltage RH < 50%
Input-Output Resistance R
I-O
10
[11]
V
I-O
= 500 V 9
Input-Output Capacitance C
I-O
1 pF Freq = 1 MHz
Notes:
1. Derate linearly above +70°C free air temperature at a rate of 0.3 mA/°C.
2. Maximum pulse width = 10 µs, maximum duty cycle = 0.2%. This value is intended to allow for component tolerances for designs with IO peak
minimum = 2.0 A. See Application section for additional details on limiting IOL peak.
3. Derate linearly above +70°C, free air temperature at the rate of 4.8 mW/°C.
4. Derate linearly above +70°C, free air temperature at the rate of 5.4 mW/°C. The maximum LED junction temperature should not exceed
+125°C.
5. Maximum pulse width = 50 µs, maximum duty cycle = 0.5%.
6. In this test, V
OH
is measured with a dc load current. When driving capacitive load V
OH
will approach V
CC
as I
OH
approaches zero amps.
7. Maximum pulse width = 1 ms, maximum duty cycle = 20%.
8. In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage > 4500 V
rms
for 1 second (leakage detec-
tion current limit I
I-O
< 5 µA).
9. Device considered a two-terminal device: pins on input side shorted together and pins on output side shorted together.
10. PWD is defined as |t
PHL
- t
PLH
| for any given device.
11. Pin 1 and 4 need to be connected to LED common.
12. Common mode transient immunity in the high state is the maximum tolerable dV
CM
/dt of the common mode pulse V
CM
to assure that the
output will remain in the high state (i.e. V
O
> 10.0 V).
13. Common mode transient immunity in a low state is the maximum tolerable dV
CM
/dt of the common mode pulse, V
CM
, to assure that the out-
put will remain in a low state (i.e. V
O
< 1.0 V).
14. t
PHL
propagation delay is measured from the 50% level on the falling edge of the input pulse to the 50% level of the falling edge of the V
O
signal. t
PLH
propagation delay is measured from the 50% level on the rising edge of the input pulse to the 50% level of the rising edge of the
V
O
signal.
15. The difference between t
PHL
and t
PLH
between any two HCPL-3180 parts under same test conditions.
SwitchingSpecications(AC)
Over recommended operating conditions unless otherwise specified.
Test
Parameter Symbol Min. Typ. Max. Units Conditions Fig. Note
Propagation Delay Time to t
PLH
50 150 200 ns 10, 11, 14
High Output Level I
F =
10 mA, 12, 13,
Propagation Delay Time to t
PHL
50 150 200 ns R
g
= 10 Ω, 14, 23
Low Output Level f = 250 kHz,
Pulse Width Distortion PWD 20 65 ns Duty Cycle = 50%, 10
Propagation Delay PDD -90 90 ns C
g
= 10 nF 34, 35 10
Difference Between Any (t
PHL-
t
PLH
)
Two Parts or Channels
Rise Time t
r
25 ns CL = 1 nF, 23
Fall Time t
f
25 ns R
g
= 0 Ω
UVLO turn On Delay t
UVLO ON
2.0 µs 22
UVLO turn Off Delay t
UVLO OFF
0.3 µs 22
Output High Level Common
|CM
H
| 10 kV/µs T
A
= 25°C, 24 11, 12
Mode Transient Immunity I
F
= 10 to 16 mA,
Output Low Level Common
|CM
L
| 10 kV/µs V
CM
= 1.5 kV, 24 11, 13
Mode Transient Immunity V
CC
= 20 V
8
Figure1.V
OH
vs.temperature.
Figure2.I
OH
vs.temperature. Figure3.V
OH
vs.I
OH
.
Figure4.V
OL
vs.temperature. Figure5.I
OL
vs.temperature. Figure6.V
OL
vs.I
OL
.
Figure7.I
CC
vs.temperature. Figure8.I
CC
vs.V
CC
. Figure9.I
FLH
vs.temperature.
(V
OH
– V
CC
) – HIGH OUTPUT VOLTAGE DROP – V
-40
-3.0
T
A
– TEMPERATURE – °C
100
-0.5
-1.0
-1.5
-2.0
-20
0
02040
-2.5
60 80
I
F
= 10 to 16 mA
I
OUT
= -100 mA
V
CC
= 10 to 20 V
V
EE
= 0 V
I
OH
– OUTPUT HIGH CURRENT – A
-40
0
T
A
– TEMPERATURE – °C
100
2.0
1.5
-20
2.5
02040
0.5
60 80
I
F
= 10 to 16 mA
V
OUT
= (V
CC
- 4 V)
V
CC
= 10 to 20 V
V
EE
= 0 V
1.0
(V
OH
– V
CC
) – OUTPUT HIGH VOLTAGE DROP – V
0
-6
I
OH
– OUTPUT HIGH CURRENT – A
4
-2
-3
1
-1
2
-5
3
I
F
= 10 to 16 mA
V
CC
= 10 to 20 V
V
EE
= 0 V
-4
100 °C
25 °C
-40 °C
V
OL
– OUTPUT LOW VOLTAGE – V
-40
0
T
A
– TEMPERATURE – °C
-20
0.30
0.25
020
0.05
100
0.15
0.20
0.10
40 60 80
V
F
(OFF) = -3.0 TO 0.8 V
I
OUT
= 100 mA
V
CC
= 10 TO 20 V
V
EE
= 0 V
I
OL
– OUTPUT LOW CURRENT – A
-40
0
T
A
– TEMPERATURE – °C
-20
3.0
020
1.0
0.5
100
1.5
2.0
2.5
40 60 80
V
F
(OFF) = -3.0 TO 0.8 V
V
OUT
= 2.5 V
V
CC
= 10 TO 20 V
V
EE
= 0 V
V
OL
– OUTPUT LOW VOLTAGE – V
0
0
I
OL
– OUTPUT LOW CURRENT – A
2.5
3
0.5
4
1.0 1.5
1
2.0
V
F(OFF)
= -3.0 to 0.8 V
V
CC
= 10 to 20 V
V
EE
= 0 V
2
100 °C
0 °C
25 °C
I
CC
– SUPPLY CURRENT – mA
-40
0
1.5
1.0
0.5
T
A
– TEMPERATURE – °C
100
3.0
2.5
-20
4.0
3.5
02040
2.0
60 80
V
CC
= 20 V
V
EE
= 0 V
I
F
= 10 mA for I
CCH
I
F
= 0 mA for I
CCL
I
CCH
I
CCL
I
CC
– SUPPLY CURRENT – mA
10
2.5
V
CC
– SUPPLY VOLTAGE – V
20
3.3
3.1
2.9
3.5
12 14
2.7
16 18
I
F
= 10 mA for I
CCH
I
F
= 0 mA for I
CCL
T
A
= 25 °C
V
EE
= 0 V
I
CCH
I
CCL
I
FLH
– LOW TO HIGH CURRENT THRESHOLD – mA
-40
0
T
A
– TEMPERATURE – °C
-20
5
020
1
100
2
3
40 60 80
V
CC
= 10 to 20 V
V
EE
= 0 V
OUTPUT = OPEN
4
9
Figure10.Propagationdelayvs.V
CC
. Figure11.Propagationdelayvs.I
F
. Figure12.Propagationdelayvs.temperature.
Figure13.Propagationdelayvs.R
g
. Figure14.Propagationdelayvs.C
g
. Figure15.Transfercharacteristics.
Figure16.Inputcurrentvs.forwardvoltage.
t
p
– PROPAGATION DELAY – ns
10
50
V
CC
– SUPPLY VOLTAGE – V
25
200
150
250
15
100
20
I
F
= 10 mA
T
A
= 25°C
R
g
= 10
C
g
= 10 nF
DUTY CYCLE = 50%
f = 250 kHz
t
PHL
t
PLH
t
p
– PROPAGATION DELAY – ns
6
50
I
F
– FORWARD LED CURRENT – mA
16
200
150
250
10
100
12
V
CC
= 20 V, V
EE
= 0 V
R
g
= 10 , C
g
= 10 nF
T
A
= 25 °C
f = 250 kHz
DUTY CYCLE = 50%
t
PLH
t
PHL
148
t
p
– PROPAGATION DELAY – ns
-40
50
T
A
– TEMPERATURE – °C
100
200
150
-20
250
02040
100
60 80
t
PHL
t
PLH
I
F
= 10 mA
V
CC
= 20 V, V
EE
= 0 V
R
g
= 10 , C
g
= 10 nF
f = 250 kHz
DUTY CYCLE = 50%
t
p
– PROPAGATION DELAY – ns
50
R
g
– SERIES LOAD RESISTANCE –
50
200
150
10
250
30
100
40
t
PLH
t
PHL
I
F
= 10 mA
T
A
= 25°C
f = 250 kHz
C
g
= 10 nF
DUTY CYCLE = 50%
20
t
p
– PROPAGATION DELAY – ns
50
C
g
– LOAD CAPACITANCE – nF
25
200
150
5
250
10
100
15 20
t
PHL
t
PLH
I
F
= 10 mA
T
A
= 25°C
Rg = 10 Ω�
f = 250 kHz
C
g
= 10 nF
DUTY CYCLE = 50%
V
O
– OUTPUT VOLTAGE – V
0
0
I
F
– FORWARD LED CURRENT – mA
1
20
2
5
5
10
15
34
I
F
– FORWARD CURRENT – mA
1.10
0.001
V
F
– FORWARD VOLTAGE – VOLTS
1.60
10
1.0
0.1
1.20
1000
1.30 1.40 1.50
T
A
= 25°C
I
F
V
F
+
0.01
100

HCPL-3180-360

Mfr. #:
Manufacturer:
Broadcom / Avago
Description:
High Speed Optocouplers 2.0A IGBT Gate Drive
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union