MAX110/MAX111
Low-Cost, 2-Channel, ±14-Bit Serial ADCs
_______________________________________________________________________________________
7
-0.10
0
-0.05
0.05
0.10
-4 -2 0 2 4
MAX110 RELATIVE ACCURACY
(-V
REF
< V
IN
< V
REF
)
MAX110 toc01
V
IN
(V)
RELATIVE ACCURANCY (%FSR)
-40°C T
A
+85°C
RANGE OF INL VALUES
(200 PIECE SAMPLE SIZE)
-0.10
0
-0.05
0.05
0.10
-4 -2 0 2 4
MAX110 RELATIVE ACCURACY
(-0.83 V
REF
< V
IN
< 0.83 V
REF
)
MAX110 toc02
V
IN
(V)
RELATIVE ACCURANCY (%FSR)
-40°C T
A
+85°C
RANGE OF INL VALUES
(200 PIECE SAMPLE SIZE)
0.07
0.06
0.05
MAX110-TOC03
0.02
0.01
0
0 0.25 0.50 0.75 1.00 1.25
0.04
0.03
f
OSC
(MHz)
RELATIVE ACCURACY (%FSR)
÷1 MODE
÷2 MODE
÷ 4 MODE
V
DD
= 4.75V
V
SS
= -4.75V
T
A
= +85°C
MAX110 RELATIVE ACCURACY vs.
OVERSAMPLING FREQUENCY (f
OSC
)
8
6
7
MAX110-TOC05
3
2
0 0.25 0.50 0.75 1.00 1.25
4
5
f
OSC
(MHz)
POWER DISSIPATION (mW)
÷ 4 MODE
÷ 2 MODE
÷ 1 MODE
MAX110 POWER DISSIPATION vs.
OVERSAMPLING FREQUENCY (f
OSC
)
V
DD
= 5.25V
V
IN
= 0V
T
A
= -40°C
__________________________________________Typical Operating Characteristics
(MAX110, V
DD
= 5V, V
SS
= -5V, V
REF+
= 1.5V, V
REF-
= -1.5V, differential input (V
IN+
= -V
IN-
), f
XCLK
= 1MHz, ÷ 2 mode (DV2 = 1),
81,920 clocks/conv, T
A
= +25°C, unless otherwise noted.)
MAX110/MAX111
Low-Cost, 2-Channel, ±14-Bit Serial ADCs
8 _______________________________________________________________________________________
____________________________Typical Operating Characteristics (continued)
(MAX111, V
DD
= 5V, V
REF+
= 1.5V, V
REF-
= 0V, differential input (V
IN+
= -V
IN-
), f
XCLK
= 1MHz, ÷ 2 mode (DV2 = 1),
81,920 clocks/conv, T
A
= +25°C, unless otherwise noted.)
0.14
0.12
0.1
MAX110-TOC08
0.04
0.02
0
0 0.25
0.50
0.75
1.00
0.08
0.06
f
OSC
(MHz)
RELATIVE ACCURACY (%FSR)
÷4 MODE
÷2 MODE
÷ 1 MODE
V
DD
= 4.75V
T
A
= +85°C
MAX111 RELATIVE ACCURACY vs.
OVERSAMPLING FREQUENCY (f
OSC
)
0.10
MAX110-TOC09
0.04
0.02
0
-50
-25
0 25 50 75 100
0.08
0.06
TEMPERATURE (°C)
RELATIVE ACCURACY (%FSR)
MAX111 RELATIVE ACCURACY
vs. TEMPERATURE
7
6
5
MAX110-TOC10
2
1
0
0 0.25 0.50 0.75 1.00 1.25
4
3
f
OSC
(MHz)
POWER DISSIPATION (mW)
÷ 4 MODE
÷ 2 MODE
÷ 1 MODE
MAX111 POWER DISSIPATION vs.
OVERSAMPLING FREQUENCY (f
OSC
)
V
DD
= 5.25V
V
IN
= 0V
T
A
= -40°C
0.10
0.05
0
-0.05
-0.10
MAX110-TOC6
V
IN
(V)
-2.0 -1.5 -1.0 -0.5 0 0.5 1.0 1.5 2.0
MAX111 RELATIVE ACCURACY
(-0.667V
REF
< V
IN
< 0.667V
REF
)
RELATIVE ACCURACY (%FSR)
0.10
0.05
0
-0.05
-0.10
MAX110-TOC7
V
IN
(V)
-2.0 -1.5 -1.0 -0.5 0 0.5 1.0 1.5 2.0
MAX111 RELATIVE ACCURACY
(-V
REF
< V
IN
< V
REF
)
RELATIVE ACCURACY (%FSR)
MAX110/MAX111
Low-Cost, 2-Channel, ±14-Bit Serial ADCs
_______________________________________________________________________________________ 9
_______________Detailed Description
The MAX110/MAX111 ADC converts low-frequency
analog signals to a 16-bit serial digital output (14 data
bits, a sign bit, and an overrange bit) using a first-order
sigma-delta loop (Figure 1). The differential input volt-
age is internally connected to a precision voltage-to-
current converter. The resulting current is integrated
and applied to a comparator. The comparator output
then drives an up/down counter and a 1-bit DAC. When
the DAC output is fed back to the integrator input, the
sigma-delta loop is completed.
During a conversion, the comparator output is a V
REF-
to V
REF+
square wave; its duty cycle is proportional to
the magnitude of the differential input voltage applied
to the ADC. The up/down counter clocks data in from
the comparator at the oversampling clock rate and
averages the pulse-width-modulated (PWM) square
wave to produce the conversion result. A 16-bit static
shift register stores the result at the end of the conver-
sion. Figure 2 shows the ADC waveforms for a differen-
tial analog input equal to 1/2 (V
REF+
- V
REF-
). The
resulting comparator and 1-bit DAC outputs are high
for seven cycles and low for three cycles of the over-
sampling clock.
Since the analog input signal is integrated over many
clock cycles, much of the signal and quantization noise
is attenuated. The more clock cycles allowed during
each conversion, the greater the noise attenuation (see
Programming Conversion Time
).
______________________________________________________________Pin Description
Clock Input / RC Oscillator Output. TTL/CMOS-compatible oversampling clock input
when RCSEL = GND. Connects to the internal RC oscillator when RCSEL = V
DD
. XCLK
must be connected to V
DD
or GND through a resistor (1Mor less) when RC OSC
mode is selected.
XCLK8
Serial Clock Input. TTL/CMOS-compatible clock input for serial-interface data I/O.SCLK9
Busy Output. Goes low at conversion start, and returns high at end of conversion.
BUSY
10
Positive Power-Supply Input—connect to +5VV
DD
6
RC Select Input. Connect to GND to select external clock mode. Connect to V
DD
to
select RC OSC mode. XCLK must be connected to V
DD
or GND through a resistor
(1Mor less) when RC OSC mode is selected.
RCSEL7
Positive Reference InputREF+3
Negative Reference InputREF-2
Channel 1 Positive Analog InputIN1+1
FUNCTIONNAME
SSOP
6
7
8
4
5
3
2
PIN
1
DIP/SO
Chip-Select Input. Pull this input low to perform a control-word-write/data-read opera-
tion. A conversion begins when CS returns high, provided NO-OP is a 1. See the sec-
tion
Using the MAX110/MAX111 with SPI, QSPI, and MICROWIRE Serial Interfaces.
CS
119
Serial Data Output. High-impedance when CS is high.
DOUT1210
Serial Data Input. See
Control Register
section.DIN1311
Digital GroundGND1612
MAX110 Negative Power-Supply Input—connect to -5VV
SS
Channel 2 Negative Analog InputIN2-1814
Channel 2 Positive Analog InputIN2+1915
Channel 1 Negative Analog InputIN1-2016
No Connect—there is no internal connection to this pinN.C.4, 5, 14, 15
MAX111 Analog GroundAGND
1713

MAX110AEWE+

Mfr. #:
Manufacturer:
Maxim Integrated
Description:
Analog to Digital Converters - ADC 2Ch +/-14Bit Serial
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union