©2011 Silicon Storage Technology, Inc. DS25045A 09/11
7
8 Mbit SPI Serial Flash
SST25VF080B
Data Sheet
A
Microchip Technology Company
Status Register
The software status register provides status on whether the flash memory array is available for any
Read or Write operation, whether the device is Write enabled, and the state of the Memory Write pro-
tection. During an internal Erase or Program operation, the status register may be read only to deter-
mine the completion of an operation in progress. Table 3 describes the function of each bit in the
software status register.
Busy
The Busy bit determines whether there is an internal Erase or Program operation in progress. A “1” for
the Busy bit indicates the device is busy with an operation in progress. A “0” indicates the device is
ready for the next valid operation.
Write Enable Latch (WEL)
The Write-Enable-Latch bit indicates the status of the internal memory Write Enable Latch. If the
Write-Enable-Latch bit is set to “1”, it indicates the device is Write enabled. If the bit is set to “0” (reset),
it indicates the device is not Write enabled and does not accept any memory Write (Program/Erase)
commands. The Write-Enable-Latch bit is automatically reset under the following conditions:
Power-up
Write-Disable (WRDI) instruction completion
Byte-Program instruction completion
Auto Address Increment (AAI) programming is completed or reached its highest unpro-
tected memory address
Sector-Erase instruction completion
Block-Erase instruction completion
Chip-Erase instruction completion
Write-Status-Register instructions
Table 3: Software Status Register
Bit Name Function
Default at
Power-up Read/Write
0 BUSY 1 = Internal Write operation is in progress
0 = No internal Write operation is in progress
0R
1 WEL 1 = Device is memory Write enabled
0 = Device is not memory Write enabled
0R
2 BP0 Indicate current level of block write protection (See Table 4) 1 R/W
3 BP1 Indicate current level of block write protection (See Table 4) 1 R/W
4 BP2 Indicate current level of block write protection (See Table 4) 1 R/W
5 BP3 Indicate current level of block write protection (See Table 4) 0 R/W
6 AAI Auto Address Increment Programming status
1 = AAI programming mode
0 = Byte-Program mode
0R
7 BPL 1 = BP3, BP2, BP1, BP0 are read-only bits
0 = BP3, BP2, BP1, BP0 are read/writable
0 R/W
T3.0 25045
©2011 Silicon Storage Technology, Inc. DS25045A 09/11
8
8 Mbit SPI Serial Flash
SST25VF080B
Data Sheet
A
Microchip Technology Company
Auto Address Increment (AAI)
The Auto Address Increment Programming-Status bit provides status on whether the device is in AAI
programming mode or Byte-Program mode. The default at power up is Byte-Program mode.
Block Protection (BP3,BP2, BP1, BP0)
The Block-Protection (BP3, BP2, BP1, BP0) bits define the size of the memory area, as defined in
Table 4, to be software protected against any memory Write (Program or Erase) operation. The Write-
Status-Register (WRSR) instruction is used to program the BP3, BP2, BP1 and BP0 bits as long as
WP# is high or the Block-Protect-Lock (BPL) bit is 0. Chip-Erase can only be executed if Block-Protec-
tion bits are all 0. After power-up, BP3, BP2, BP1 and BP0 are set to 1.
Block Protection Lock-Down (BPL)
WP# pin driven low (V
IL
), enables the Block-Protection-Lock-Down (BPL) bit. When BPL is set to 1, it
prevents any further alteration of the BPL, BP3, BP2, BP1, and BP0 bits. When the WP# pin is driven
high (V
IH
), the BPL bit has no effect and its value is “Don’t Care”. After power-up, the BPL bit is reset to
0.
Table 4: Software Status Register Block Protection for SST25VF080B
1
1. X = Don’t Care (RESERVED) default is “0
Protection Level
Status Register Bit
2
2. Default at power-up for BP2, BP1, and BP0 is ‘111’. (All Blocks Protected)
Protected Memory Address
BP3 BP2 BP1 BP0 8 Mbit
None X 0 0 0 None
Upper 1/16 X 0 0 1 F0000H-FFFFFH
Upper 1/8 X 0 1 0 E0000H-FFFFFH
Upper 1/4 X 0 1 1 C0000H-FFFFFH
Upper 1/2 X 1 0 0 80000H-FFFFFH
All Blocks X 1 0 1 00000H-FFFFFH
All Blocks X 1 1 0 00000H-FFFFFH
All Blocks X 1 1 1 00000H-FFFFFH
T4.0 25045
©2011 Silicon Storage Technology, Inc. DS25045A 09/11
9
8 Mbit SPI Serial Flash
SST25VF080B
Data Sheet
A
Microchip Technology Company
Instructions
Instructions are used to read, write (Erase and Program), and configure the SST25VF080B. The
instruction bus cycles are 8 bits each for commands (Op Code), data, and addresses. Prior to execut-
ing any Byte-Program, Auto Address Increment (AAI) programming, Sector-Erase, Block-Erase, Write-
Status-Register, or Chip-Erase instructions, the Write-Enable (WREN) instruction must be executed
first. The complete list of instructions is provided in Table 5. All instructions are synchronized off a high
to low transition of CE#. Inputs will be accepted on the rising edge of SCK starting with the most signif-
icant bit. CE# must be driven low before an instruction is entered and must be driven high after the last
bit of the instruction has been shifted in (except for Read, Read-ID, and Read-Status-Register instruc-
tions). Any low to high transition on CE#, before receiving the last bit of an instruction bus cycle, will
terminate the instruction in progress and return the device to standby mode. Instruction commands
(Op Code), addresses, and data are all input from the most significant bit (MSB) first.
Table 5: Device Operation Instructions
Instruction Description Op Code Cycle
1
1. One bus cycle is eight clock periods.
Address
Cycle(s)
2
2. Address bits above the most significant bit of each density can be V
IL
or V
IH
.
Dummy
Cycle(s)
Data
Cycle(s)
Read Read Memory 0000 0011b (03H) 3 0 1 to
High-Speed Read Read Memory at higher
speed
0000 1011b (0BH) 3 1 1 to
4 KByte Sector-Erase
3
3. 4KByte Sector Erase addresses: use A
MS
-A
12,
remaining addresses are don’t care but must be set either at V
IL
or V
IH.
Erase 4 KByte of
memory array
0010 0000b (20H) 3 0 0
32 KByte Block-Erase
4
4. 32KByte Block Erase addresses: use A
MS
-A
15,
remaining addresses are don’t care but must be set either at V
IL
or V
IH.
Erase 32 KByte block
of memory array
0101 0010b (52H) 3 0 0
64 KByte Block-Erase
5
5. 64KByte Block Erase addresses: use A
MS
-A
16,
remaining addresses are don’t care but must be set either at V
IL
or V
IH.
Erase 64 KByte block
of memory array
1101 1000b (D8H) 3 0 0
Chip-Erase Erase Full Memory Array 0110 0000b (60H) or
1100 0111b (C7H)
000
Byte-Program To Program One Data Byte 0000 0010b (02H) 3 0 1
AAI-Word-Program
6
Auto Address Increment
Programming
1010 1101b (ADH) 3 0 2 to
RDSR
7
Read-Status-Register 0000 0101b (05H) 0 0 1 to
EWSR Enable-Write-Status-Register 0101b 0000b (50H) 0 0 0
WRSR Write-Status-Register 0000 0001b (01H) 0 0 1
WREN Write-Enable 0000 0110b (06H) 0 0 0
WRDI Write-Disable 0000 0100b (04H) 0 0 0
RDID
8
Read-ID 1001 0000b (90H) or
1010 1011b (ABH)
301to
JEDEC-ID JEDEC ID read 1001 1111b (9FH) 0 0 3 to
EBSY Enable SO to output RY/BY#
status during AAI programming
0111 0000b (70H) 0 0 0
DBSY Disable SO as RY/BY#
status during AAI programming
1000 0000b (80H) 0 0 0
T5.0 25045

SST25VF080B-80-4I-S2AE

Mfr. #:
Manufacturer:
Microchip Technology
Description:
NOR Flash 8M (1Mx8) 80MHz 2.7-3.6V Industrial
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union