REV. A
AD974
–6–
DEFINITION OF SPECIFICATIONS
INTEGRAL NONLINEARITY ERROR (INL)
Linearity error refers to the deviation of each individual code
from a line drawn from “negative full scale” through “positive
full scale.” The point used as “negative full scale” occurs 1/2 LSB
before the first code transition. “Positive full scale” is defined as
a level 1 1/2 LSB beyond the last code transition. The deviation
is measured from the middle of each particular code to the true
straight line.
DIFFERENTIAL NONLINEARITY ERROR (DNL)
In an ideal ADC, code transitions are 1 LSB apart. Differential
nonlinearity is the maximum deviation from this ideal value. It
is often specified in terms of resolution for which no missing
codes are guaranteed.
FULL-SCALE ERROR
The last + transition (from 011 . . . 10 to 011 . . . 11) should
occur for an analog voltage 1 1/2 LSB below the nominal full
scale (9.9995422 V for a ±10 V range). The full-scale error is
the deviation of the actual level of the last transition from the
ideal level.
BIPOLAR ZERO ERROR
Bipolar zero error is the difference between the ideal midscale
input voltage (0 V) and the actual voltage producing the mid-
scale output code.
UNIPOLAR ZERO ERROR
In unipolar mode, the first transition should occur at a level
1/2 LSB above analog ground. Unipolar zero error is the devia-
tion of the actual transition from that point.
SPURIOUS FREE DYNAMIC RANGE
The difference, in decibels (dB), between the rms amplitude of
the input signal and the peak spurious signal.
TOTAL HARMONIC DISTORTION (THD)
THD is the ratio of the rms sum of the first six harmonic com-
ponents to the rms value of a full-scale input signal and is ex-
pressed in decibels.
SIGNAL TO (NOISE AND DISTORTION) (S/[N+D]) RATIO
S/(N+D) is the ratio of the rms value of the measured input
signal to the rms sum of all other spectral components below
the Nyquist frequency, including harmonics but excluding dc.
The value for S/(N+D) is expressed in decibels.
FULL POWER BANDWIDTH
The full power bandwidth is defined as the full-scale input fre-
quency at which the S/(N+D) degrades to 60 dB, 10 bits of
accuracy.
APERTURE DELAY
Aperture delay is a measure of the acquisition performance, and
is measured from the falling edge of the R/C input to when the
input signal is held for a conversion.
TRANSIENT RESPONSE
The time required for the AD974 to achieve its rated accuracy
after a full-scale step function is applied to its input.
OVERVOLTAGE RECOVERY
The time required for the ADC to recover to full accuracy after
an analog input signal 150% of full-scale is reduced to 50% of
the full-scale value.
REV. A
AD974
–7–
CONVERSION CONTROL
The AD974 is controlled by two signals: R/C and CS. When
R/C is brought low, with CS low, for a minimum of 50 ns, the
input signal will be held on the internal capacitor array and a
conversion “n” will begin. Once the conversion process does
begin, the BUSY signal will go low until the conversion is com-
plete. Internally, the signals R/C and CS are ORed together and
there is no requirement on which signal is taken low first when
initiating a conversion. The only requirement is that there be at
least 10 ns of delay between the two signals being taken low.
After the conversion is complete, the BUSY signal will return
high and the AD974 will again resume tracking the input signal.
Under certain conditions the CS pin can be tied Low and R/C
will be used to determine whether you are initiating a conver-
sion or reading data. On the first conversion, after the AD974 is
powered up, the DATA output will be indeterminate.
Conversion results can be clocked serially, using either an
internal clock generated by the AD974 or an external clock.
The AD974 is configured for the internal data clock mode by
pulling the EXT/INT pin low. It is configured for the external
clock mode by pulling the EXT/INT pin high.
INTERNAL DATA CLOCK MODE
The AD974 is configured to generate and provide the data clock
when the EXT/INT pin is held low. Typically CS will be tied
low and R/C will be used to initiate a conversion “n.” During
the conversion the AD974 will output 16 bits of data, MSB first,
from conversion “n-1” on the DATA pin. This data will be
synchronized with 16 clock pulses provided on the DATACLK
pin. The output data will be valid on both the rising and falling
edge of the data clock as shown in Figure 3. After the LSB has
been presented, the DATACLK pin will stay low until another
conversion is initiated.
In this mode, the digital input/output pins’ transitions are suit-
ably positioned to minimize degradation on the conversion
result, mainly during the second half of the conversion process.
EXTERNAL DATA CLOCK MODE
The AD974 is configured to accept an externally supplied data
clock when the EXT/INT pin is held high. This mode of opera-
tion provides several methods by which conversion results can
be read. The output data from conversion “n-1” can be read
during conversion “n,” or the output data from conversion “n”
CS, R/C
BUSY
MODE
ACQUIRE CONVERT
t
1
CONVERT
ACQUIRE
t
3
t
2
t
5
t
6
t
4
t
7
t
23
t
25
t
24
A0, A1
WR1, WR2
Figure 2. Basic Conversion Timing
R/C
DATACLK
DATA
BUSY
1
MSB
VALID
BIT 14
VALID
t
8
t
1
t
9
2 3 15 16
t
10
t
11
BIT 13
VALID
BIT 1
VALID
LSB
VALID
t
2
t
6
Figure 3. Serial Data Timing for Reading Previous Conversion Results with Internal Clock
(
CS
and EXT/
INT
Set to Logic Low)
REV. A
AD974
–8–
can be read after the conversion is complete. The external clock
can be either a continuous or discontinuous clock. A discontinu-
ous clock can be either normally low or normally high when
inactive. In the case of the discontinuous clock, the AD974 can be
configured to either generate or not generate a SYNC output
(with a continuous clock a SYNC output will always be produced).
Each of the methods will be described in the following sections
and are illustrated in Figures 4 through 9. It should be noted
that all timing diagrams assume that the receiving device is
latching data on the rising edge of the external clock. If the
falling edge of DATACLK is used then, in the case of a discon-
tinuous clock, one less clock pulse is required than shown in
Figures 4 through 7 to latch in a 16-bit word. Note that data is
valid on the falling edge of a clock pulse (for t
13
greater than t
18
)
and the rising edge of the next clock pulse.
The AD974 provides error correction circuitry that can correct
for an improper bit decision made during the first half of the
conversion cycle. Normally the occurrence of an incorrect bit
decision during a conversion cycle is irreversible. This error
occurs as a result of noise during the time of the decision or due
to insufficient settling time. As the AD974 is performing a
conversion it is important that transitions not occur on digital
input/output pins or degradation of the conversion result could
occur. This is particularly important during the second half of
the conversion process. For this reason it is recommended that
when an external clock is being provided it be a discontinuous
clock that is not toggling during the time that BUSY is low or,
more importantly, that it does not transition during the latter
half of BUSY low.
EXTERNAL DISCONTINUOUS CLOCK DATA READ
AFTER CONVERSION WITH NO SYNC OUTPUT
GENERATED
Figure 4 illustrates the method by which data from conversion
“n” can be read after the conversion is complete using a discon-
tinuous external clock without the generation of a SYNC
output. After a conversion is complete, indicated by BUSY
returning high, the result of that conversion can be read while
CS is Low and R/C is high. In this mode CS can be tied low.
The MSB will be valid on the first falling edge and the second
rising edge of DATACLK. The LSB will be valid on the 16th
falling edge and the 17th rising edge of DATACLK. A mini-
mum of 16 clock pulses are required for DATACLK if the
receiving device will be latching data on the falling edge of
DATACLK. A minimum of 17 clock pulses are required for
DATACLK if the receiving device will be latching data on the
rising edge of DATACLK.
The advantage of this method of reading data is that data is not
being clocked out during a conversion and therefore conversion
performance is not degraded.
When reading data after the conversion is complete, with the
highest frequency permitted for DATACLK (15.15 MHz), the
maximum possible throughput is approximately 195 kHz, and
not the rated 200 kHz.
EXT
DATACLK
R/C
BUSY
SYNC
DATA
t
12
0 123 141516
t
13
t
14
t
1
t
2
t
21
t
18
t
18
BIT 15
(MSB)
BIT 14 BIT 13 BIT 1
BIT 0
(LSB)
Figure 4. Conversion and Read Timing Using an External Discontinuous Data Clock
(EXT/
INT
Set to Logic High,
CS
Set to Logic Low)

AD974BR

Mfr. #:
Manufacturer:
Analog Devices Inc.
Description:
Analog to Digital Converters - ADC 4CH 16-Bit 200 kSPS
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union