LTC3548-2
7
35482fb
OPERATION
The LTC3548-2 uses a constant-frequency, current mode
architecture. The operating frequency is set at 2.25MHz
and can be synchronized to an external oscillator. Both
channels share the same clock and run in-phase. To suit a
variety of applications, the selectable MODE pin allows the
user to choose between low noise and high effi ciency.
The output voltage for channel 1 is set by an internal divider
returned to the V
OUT1
pin. The output voltage for channel 2
is set by an external divider returned to the V
FB2
pin. An
error amplifi er compares the feedback output voltage with
a reference voltage of 0.6V and adjusts the peak inductor
current accordingly. An undervoltage comparator will
pull the POR output low if the output voltage is not above
–8.5% of the reference voltage. The POR output will go
high after 262,144 clock cycles (about 117ms in pulse-
skipping mode) of achieving regulation.
Main Control Loop
During normal operation, the top power switch (P-channel
MOSFET) is turned on at the beginning of a clock cycle
when the V
FB
voltage (see the Block Diagram) is below the
the reference voltage. The current into the inductor and
the load increases until the current limit is reached. The
switch turns off and energy stored in the inductor fl ows
through the bottom switch (N-channel MOSFET) into the
load until the next clock cycle.
The peak inductor current is controlled by the internally
compensated I
TH
voltage, which is the output of the er-
ror amplifi er. This amplifi er compares the V
FB
to the 0.6V
reference. When the load current increases, the V
FB
volt-
age decreases slightly below the reference. This decrease
causes the error amplifi er to increase the I
TH
voltage until
the average inductor current matches the new load cur-
rent. The main control loop is shut down by pulling the
RUN pin to ground.
Low Current Operation
By selecting MODE/SYNC (Pin 6), two modes are available
to control the operation of the LTC3548-2 at low currents.
Both modes automatically switch from continuous opera-
tion to the selected mode when the load current is low.
To optimize effi ciency, the Burst Mode operation can be
selected. When the load is relatively light, the LTC3548-2
automatically switches into Burst Mode operation in which
the PMOS switch operates intermittently based on load
demand with a fi xed peak inductor current. By running
cycles periodically, the switching losses which are domi-
nated by the gate charge losses of the power MOSFETs
are minimized. The main control loop is interrupted when
the output voltage reaches the desired regulated value. A
voltage comparator trips when I
TH
is below 0.35V, shutting
off the switch and reducing the power. The output capaci-
tor and the inductor supply the power to the load until I
TH
exceeds 0.65V, turning on the switch and the main control
loop which starts another cycle.
For lower ripple noise at low currents, the pulse-skipping
mode can be used. In this mode, the LTC3548-2 continues
to switch at a constant frequency down to very low cur-
rents, where it will begin skipping pulses. The effi ciency in
pulse-skipping mode can be improved slightly by connect-
ing the SW node to the MODE/SYNC input which reduces
the clock frequency by approximately 30%.
Dropout Operation
When the input supply voltage decreases toward the
output voltage, the duty cycle increases to 100% which
is the dropout condition. In dropout, the PMOS switch is
turned on continuously with the output voltage being equal
to the input voltage minus the voltage drops across the
internal P-channel MOSFET and the inductor.
An important design consideration is that the R
DS(ON)
of the P-channel switch increases with decreasing input
supply voltage (see Typical Performance Characteristics).
Therefore, the user should calculate the power dissipation
when the LTC3548-2 is used at 100% duty cycle with low
input voltage (see Thermal Considerations in the Applica-
tions Information section).
Low Supply Operation
To prevent unstable operation, the LTC3548-2 incorporates
an undervoltage lockout circuit that shuts down the part
when the input voltage drops below about 1.65V.
LTC3548-2
8
35482fb
A general LTC3548-2 application circuit is shown in
Figure 2. External component selection is driven by the
load requirement, and begins with the selection of the
inductor L. Once the inductor is chosen, C
IN
and C
OUT
can be selected.
APPLICATIONS INFORMATION
Figure 2. LTC3548-2 General Schematic
The inductor value will also have an effect on Burst Mode
operation. The transition from low current operation
begins when the peak inductor current falls below a level
set by the burst clamp. Lower inductor values result in
higher ripple current which causes this to occur at lower
load currents. This causes a dip in effi ciency in the upper
range of low current operation. In Burst Mode operation,
lower inductance values will cause the burst frequency
to increase.
Inductor Core Selection
Different core materials and shapes will change the size/
current and price/current relationship of an inductor.
Toroid or shielded pot cores in ferrite or permalloy
materials are small and do not radiate much energy,
but generally cost more than powdered iron core induc-
tors with similar electrical characteristics. The choice of
which style inductor to use often depends more on the
price vs size requirements and any radiated fi eld/EMI
requirements than on what the LTC3548-2 requires to
operate. Table 1 shows some typical surface mount
inductors that work well in LTC3548-2 applications.
Table 1. Representative Surface Mount Inductors
PART
NUMBER
VALUE
(μH)
DCR
(Ω MAX)
MAX DC
CURRENT (A)
SIZE
W × L × H (mm
3
)
Sumida
CDRH3D16
2.2
3.3
4.7
0.075
0.110
0.162
1.20
1.10
0.90
3.8 × 3.8 × 1.8
Sumida
CDRH2D11
1.5
2.2
0.068
0.170
0.900
0.780
3.2 × 3.2 × 1.2
Sumida
CMD4D11
2.2
3.3
0.116
0.174
0.950
0.770
4.4 × 5.8 × 1.2
Murata
LQH32CN
1.0
2.2
0.060
0.097
1.00
0.79
2.5 × 3.2 × 2.0
Toko
D312F
2.2
3.3
0.060
0.260
1.08
0.92
2.5 × 3.2 × 2.0
Panasonic
ELT5KT
3.3
4.7
0.17
0.20
1.00
0.95
4.5 × 5.4 × 1.2
Input Capacitor (C
IN
) Selection
In continuous mode, the input current of the converter is a
square wave with a duty cycle of approximately V
OUT
/V
IN
.
To prevent large voltage transients, a low equivalent series
resistance (ESR) input capacitor sized for the maximum
Inductor Selection
Although the inductor does not infl uence the operating fre-
quency, the inductor value has a direct effect on ripple cur-
rent. The inductor ripple current ΔI
L
decreases with higher
inductance and increases with higher V
IN
or V
OUT
:
Δ=
I
V
fL
V
V
L
OUT
O
OUT
IN
•–1
Accepting larger values of ΔI
L
allows the use of low
inductances, but results in higher output voltage ripple,
greater core losses, and lower output current capability.
A reasonable starting point for setting ripple current is
ΔI
L
= 0.3 • I
OUT(MAX)
, where I
OUT(MAX)
is 800mA for channel 1
and 400mA for channel 2. The largest ripple current ΔI
L
occurs at the maximum input voltage. To guarantee that
the ripple current stays below a specifi ed maximum, the
inductor value should be chosen according to the follow-
ing equation:
L
V
fI
V
V
OUT
OL
OUT
IN MAX
Δ
•–
()
1
RUN2 V
IN
V
IN
2.5V TO 5.5V
V
OUT2
V
OUT1
RUN1
POR
SW1
V
OUT1
GND
V
FB2
SW2
MODE/SYNC
LTC3548-2
C
IN
R5
POWER-ON
RESET
C5
L1
L2
R2
R1
C
OUT2
C
OUT1
35482 F02
PS*
BM*
*MODE/SYNC = 0V: PULSE SKIPPING
MODE/SYNC = V
IN
: Burst Mode OPERATION
LTC3548-2
9
35482fb
APPLICATIONS INFORMATION
RMS current must be used. The maximum RMS capacitor
current is given by:
II
VVV
V
RMS MAX
OUT IN OUT
IN
(– )
where the maximum average output current I
MAX
equals
the peak current minus half the peak-to-peak ripple cur-
rent, I
MAX
= I
LIM
– ΔI
L
/2.
This formula has a maximum at V
IN
= 2V
OUT
, where I
RMS
= I
OUT
/2. This simple worst-case is commonly used to
design because even signifi cant deviations do not offer
much relief. Note that capacitor manufacturers ripple cur-
rent ratings are often based on only 2000 hours lifetime.
This makes it advisable to further derate the capacitor,
or choose a capacitor rated at a higher temperature than
required. Several capacitors may also be paralleled to meet
the size or height requirements of the design. An additional
0.1μF to 1μF ceramic capacitor is also recommended on
V
IN
for high frequency decoupling, when not using an all
ceramic capacitor solution.
Output Capacitor (C
OUT
) Selection
The selection of C
OUT
is driven by the required ESR to
minimize voltage ripple and load step transients. Typically,
once the ESR requirement is satisfi ed, the capacitance
is adequate for fi ltering. The output ripple (ΔV
OUT
) is
determined by:
Δ≈Δ +
V I ESR
fC
OUT L
O OUT
1
8•
where f
O
= operating frequency, C
OUT
= output capacitance
and ΔI
L
= ripple current in the inductor. The output ripple
is highest at maximum input voltage since ΔI
L
increases
with input voltage. With ΔI
L
= 0.3 • I
OUT(MAX)
the output
ripple will be less than 100mV at maximum V
IN
and
f
O
= 2.25MHz with:
ESR
COUT
< 150mΩ
Once the ESR requirements for C
OUT
have been met, the
RMS current rating generally far exceeds the I
RIPPLE(P-P)
requirement, except for an all ceramic solution.
In surface mount applications, multiple capacitors may
have to be paralleled to meet the capacitance, ESR or
RMS current handling requirement of the application.
Aluminum electrolytic, special polymer, ceramic and dry
tantalum capacitors are all available in surface mount
packages. The OS-CON semiconductor dielectric capacitor
available from Sanyo has the lowest ESR (size) product
of any aluminum electrolytic at a somewhat higher price.
Special polymer capacitors, such as Sanyo POSCAP,
Panasonic Special Polymer (SP) and Kemet A700, of-
fer very low ESR, but have a lower capacitance density
than other types. Tantalum capacitors have the highest
capacitance density, but they have a larger ESR and it
is critical that the capacitors are surge tested for use in
switching power supplies. An excellent choice is the AVX
TPS series of surface mount tantalums, available in case
heights ranging from 2mm to 4mm. Aluminum electrolytic
capacitors have a signifi cantly larger ESR, and are often
used in extremely cost-sensitive applications provided that
consideration is given to ripple current ratings and long
term reliability. Ceramic capacitors have the lowest ESR
and cost, but also have the lowest capacitance density,
a high voltage and temperature coeffi cient, and exhibit
audible piezoelectric effects. In addition, the high Q of
ceramic capacitors along with trace inductance can lead
to signifi cant ringing.
In most cases, 0.1μF to 1μF of ceramic capacitors should
also be placed close to the LTC3548-2 in parallel with the
main capacitors for high frequency decoupling.
Ceramic Input and Output Capacitors
Higher value, lower cost ceramic capacitors are now be-
coming available in smaller case sizes. These are tempting
for switching regulator use because of their very low ESR.
Unfortunately, the ESR is so low that it can cause loop
stability problems. Solid tantalum capacitor ESR generates
a loop zero at 5kHz to 50kHz that is instrumental in giving
acceptable loop phase margin. Ceramic capacitors remain
capacitive to beyond 300kHz and usually resonate with their
ESL before ESR becomes effective. Also, ceramic caps are
prone to temperature effects which requires the designer
to check loop stability over the operating temperature
range. To minimize their large temperature and voltage
coeffi cients, only X5R or X7R ceramic capacitors should
be used. A good selection of ceramic capacitors is available
from Taiyo Yuden, AVX, Kemet, TDK and Murata.

LTC3548EDD-2#PBF

Mfr. #:
Manufacturer:
Analog Devices / Linear Technology
Description:
Switching Voltage Regulators DC/DC Regulator Fixed/Adjustable 1.8V/0.8A &0.6V to 5V
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union

Products related to this Datasheet