AD8352
Rev. B | Page 9 of 20
50
40
30
20
15
45
35
25
10
5.0
4.0
3.0
2.0
1.5
4.5
3.5
2.5
1.0
0 50 100 150 200 250 300 350 400 450 500
05728-049
NOISE FIGURE (dB), OIP3 (dBm)
FREQUENCY (MHz)
A
V
= 10dB
A
V
= 10dB
A
V
= 6dB
A
V
= 10dB
A
V
= 15dB
SPECTRAL NOISE DENSITY RTI (nV/ Hz)
OIP3
NOISE FIGURE
Figure 10. Noise Figure, OIP3, and Spectral Noise Density vs.
Frequency, 2 V p-p Composite, R
L
= 200 Ω
500MHz
380MHz
240MHz
190MHz
70MHz
140MHz
100MHz
45
40
35
30
25
20
0 10050 200 300150 250 350 400
05728-050
OIP3 (dBm)
GAIN SETTING RESISTOR ()
Figure 11. Output IP3 (OIP3) vs. R
G
for
Multiple Frequencies, R
L
= 200 Ω
60
–90
FREQUENCY (MHz)
HARMONIC DISTORTION (dBc)
–65
–70
–75
–80
–85
220 260 300 340 380 420 460 500
> 300MHz NO C
D
OR R
D
USED
HD3
2V p-p
HD2
2V p-p
HD3
1V p-p
05728-009
Figure 12. Third-Order Harmonic Distortion (HD3) vs. Frequency,
A
V
= 10 dB, R
L
= 200 Ω
500MHz
380MHz
240MHz
190MHz
140MHz
70MHz
100MHz
16.5
16.0
15.5
15.0
14.0
14.5
13.5
13.0
0 10050 200 300150 250 350 450400
05728-051
OUTPUT P1dB (dBm)
GAIN SETTING RESISTOR ()
Figure 13. Output 1 dB Compression Point (P1dB) vs.
R
G
for Multiple Frequencies, R
L
= 200 Ω
60
–110
0 500
FREQUENCY (MHz)
HARMONIC DISTORTION (dBc)
–65
–70
–75
–80
–85
–90
–95
–100
–105
50 100 150 200 250 300 350 400 450
HD3
HD2
05728-005
Figure 14. Harmonic Distortion vs. Frequency for 2 V p-p into R
L
= 1 kΩ,
A
V
= 10 dB, 5 V Supply, R
G
= 180 Ω, R
D
= 6.8 kΩ, C
D
= 0.1 pF
50
–110
0 400
FREQUENCY (MHz)
HARMONIC DISTORTION (dBc)
–60
–70
–80
–90
–100
50 100 150 200 250 300 350
HD2
HD3
05728-007
Figure 15. Harmonic Distortion vs. Frequency for 2 V p-p into R
L
= 200 Ω,
A
V
= 10 dB, R
G
= 115 Ω, R
D
= 4.3 kΩ, C
D
= 0.2 pF
AD8352
Rev. B | Page 10 of 20
FREQUENCY (MHz)
GROUP DELAY (ns)
0 1000
0.6
0.5
0.4
0.3
0.2
0.1
0
0
–20
–40
–60
–80
–100
–120
100 200 300 400 500 600 700 800 900
PHASE (Degrees)
05728-042
Figure 16. Group Delay and Phase vs. Frequency, A
V
= 10 dB, R
L
= 200 Ω
3500
3000
2500
2000
1000
1500
500
0
0
–0.05
–0.10
–0.15
–0.25
–0.20
–0.30
–0.35
0 100 200 300 1000400 500 600 700 800 900
05728-052
INPUT RESISTANCE ()
INPUT CAPACITANCE (pF)
FREQUENCY (MHz)
Figure 17. S11 Equivalent RC Parallel Network, R
G
= 115 Ω
160
100
120
140
60
80
40
20
0
0.7
0.6
0.5
0.4
0.2
0.3
0.1
–1.0
0
0 100 200 300 1000400 500 600 700 800 900
05728-053
OUTPUT RESISTANCE ()
OUTPUT CAPACITANCE (pF)
FREQUENCY (MHz)
Figure 18. S22 Equivalent RC Parallel Network, R
G
= 115 Ω
TIME (nsec)
VOLTAGE (V)
03
1.5
–1.5
.0
1.0
0.5
0
–0.5
–1.0
0.5 1.0 1.5 2.0 2.5
t
RISE
(10/90) = 215ps
t
FALL
(10/90) = 210ps
05728-046
Figure 19. Large Signal Output Transient Response, R
L
= 200 Ω, A
V
= 10 dB.
5
–5
04
TIME (nsec)
SETTLING (%)
.0
4
3
2
1
0
–1
–2
–3
–4
0.5 1.0 1.5 2.0 2.5 3.0 3.5
05728-047
Figure 20. 1% Settling Time for a 2 V p-p Step Response,
A
V
= 10 dB, R
L
= 200 Ω
5
6
3
4
2
1
0
0 50 100 150 400200 250 300 350
05728-054
SPECTRAL NOISE DENSITY RTI (nV/ Hz)
NOISE FIGURE (dB)
GAIN SETTING RESISTOR ()
5
10
15
20
25
Figure 21. Spectral Noise Density RTI and Noise Figure vs. R
G
, R
L
= 200 Ω
AD8352
Rev. B | Page 11 of 20
APPLICATIONS INFORMATION
GAIN AND DISTORTION ADJUSTMENT
(DIFFERENTIAL INPUT)
Table 5 and Table 6 show the required value of R
G
for the gains
specified at 200 Ω and 1 kΩ loads. Figure 22 and Figure 24 plot
gain vs. R
G
up to 18 dB for both load conditions. For other output
loads (R
L
), use Equation 1 to compute gain vs. R
G
.
L
L
G
G
alDifferentiV
R
RR
R
A
+++
+
=
43053)(5)(
500
(1)
where
R
L
is the single-ended load.
R
G
is the gain setting resistor.
The third-order harmonic distortion can be reduced by using
external components R
D
and C
D
. Table 5 and Table 6 show the
required values for R
D
and C
D
for the specified gains to achieve
(single tone) third-order distortion reduction at 180 MHz.
Figure 23 and Figure 25 show any gain (up to 18 dB) vs. C
D
for
200 Ω and 1 kΩ loads, respectively. When these values are selected,
they result in minimum single tone, third-order distortion at
180 MHz. This frequency point provides the best overall broad-
band distortion for the specified frequencies below and above
this value. For applications above ~300 MHz, C
D
and R
D
are
not required. See the Specifications section and the third-order
harmonic plots for more details (see Figure 12, Figure 14, and
Figure 15).
C
D
can be further optimized for narrow-band tuning requirements
below 180 MHz that result in relatively lower third-order (in-
band) intermodulation distortion terms. See the Narrow-Band,
Third-Order Intermodulation Cancellation section for more
information. Though not shown, single tone, third-order
optimization can also be improved for narrow-band frequency
applications below 180 MHz with the proper selection of C
D
,
and 3 dB to 6 dB of relative third-order improvement can be
realized at frequencies below approximately 140 MHz.
Using the information listed in Table 5 and Table 6, an extrapolated
value for R
D
can be determined for loads between 200 Ω and 1 kΩ.
For loads above 1 kΩ, use the 1 kΩ R
D
values listed in Table 6.
Table 5. Broadband Selection of RG, CD, and RD, 200 Ω Load
A
V
(dB) R
G
(Ω) C
D
(pF) R
D
(kΩ)
3 390 Open 6.8
6 220 Open 4.3
9 140 0.1 4.3
10 115 0.2 4.3
12 86 0.3 4.3
15 56 0.6 4.3
18 35 1 4.3
Table 6. Broadband Selection of R
G
, C
D
, and R
D
, 1 kΩ Load
A
V
(dB) R
G
(Ω) C
D
(pF) R
D
(kΩ)
3 750 Open 6.8
6 360 Open 6.8
9 210 Open 6.8
10 180 0.05 6.8
12 130 0.1 6.8
15 82 0.3 6.8
18 54 0.5 6.8
20
0
0 400
R
G
()
GAIN (dB)
18
16
14
12
10
8
6
4
2
100 200 30050 150 250 350
05728-026
Figure 22. Gain vs. R
G
, R
L
= 200 Ω
20
0
0
C
D
(pF)
GAIN (dB)
18
16
14
12
10
8
6
4
2
0.2 0.4 0.6 0.8 1.00.1 0.3 0.5 0.7 0.9
05728-027
Figure 23. Gain vs. C
D
, R
L
= 200 Ω

AD8352ACPZ-R7

Mfr. #:
Manufacturer:
Analog Devices Inc.
Description:
RF Amplifier 2 GHZ Low Distortion RF/IF
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union

Products related to this Datasheet