Adaptive Thermal Monitoring
The device features adaptive thermal monitoring. While most host computers exhibit
operating environments that keep an SSD running in the range of 40°C to 45°C, adap-
tive thermal monitoring enables the SSD device to operate in a wide variety of environ-
ments by helping to prevent the host computer from running at excessive temperatures.
Adaptive thermal monitoring reduces total SSD power consumption by the device con-
troller, as well as the NAND media, by injecting time-based delays between internal
processing of media commands when the device temperature reaches 75 °C. The delay
times used are bound to the microsecond range, and are based on a proportional and
differential control equation of the general form shown here.
Figure 6: Adaptive Thermal Monitoring Control Equation
u(t) = Kp × T
p
(t) + Kd ×
dT
d
dt
The delay-control equation is tuned for a steady-state temperature target, which has
been designed as an optimum balance of hardware temperature tolerances and drive
performance. Steady-state temperature targets are hardware-configuration dependant,
and may range from 80 °C to 84 °C. Temperatures below the intended steady-state target
will not produce a proportional component to delay, but may produce a differential
component based on the current rate of temperature change according to the control
equation. When the feature is active, DRAM refresh rates are also adjusted to improve
data integrity and stability while operating outside of temperature specifications.
When the device temperature falls below 73 °C, normal operation will continue without
induced delays. If temperature continues to rise above the temperature target and ex-
ceeds a hardware-dependant critical threshold, the device will abort host commands to
prevent component damage. The critical threshold values have a 6 °C margin on top of
target threshold, and range between 86 °C and 90 °C.
Device temperature values used by the adaptive thermal monitoring feature are based
on an internal temperature sensor located on the device PCB, and may differ from case
or package temperatures as measured by thermocouple. Device temperature is accessi-
ble through SMART attribute 194, though usage of the SMART feature is not necessary
for adaptive thermal monitoring functionality.
Adaptive thermal monitoring does not change the current negotiated speed of the SATA
bus, nor require or cause any new commands to be issued on the SATA bus. Rated-
throughput performance is not guaranteed at any point above the maximum specified
operating temperature.
M600 M.2 Type 2260/2280 NAND Flash SSD
Adaptive Thermal Monitoring
PDF: 09005aef859ad464
m600_m2_2260_2280_ssd.pdf - Rev. E 3/15 EN
13
Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2014 Micron Technology, Inc. All rights reserved.
TCG/Opal Support
Table 13: TCG/Opal Support Parameters
Property Supported? Comments
TCG Storage Specifications
OPAL: TCG Storage Security SubSystem
Class
Specification 2.00 Revision 1.00, Feb 24, 2012
TCG Core Specification Specification 2.00 Revision 2.00, Nov 4, 2011
TCG Storage Interface Interactions Specifi-
cation
TCG Reference
Specification
Specification Version 1.02 Revision 1.00 30 Decem-
ber, 2011
OPAL SSC 1.00 (backward compatibility) Not supported
OPAL SSC Additional Feature Set Specification
Additional DataStore Table Supported Specification 1.00 Revision 1.00, Feb 24, 2012
Single User Mode Supported Specification 1.00 Revision 1.00, Feb 24, 2012
TCG Storage Protection Mechanisms for
Secrets
Supported Specification Version 1.00 Revision 1.07 17 August,
2011
PSID – Physical Presence SID Supported Specification Version 1.00 Committee Draft Revi-
sion 1.05 February 9, 2011
GUDID (Globally Unique Serial Number) Supported Mandatory GUDID Proposal 11/03/2011 (Microsoft)
SID Authority Disable Supported SID Authority Disable Proposal 9/26/2011 (Micro-
soft)
Modifiable CommonName Columns Supported Modifiable CommonName Columns Proposal
7/22/2010 (Microsoft)
OPAL SSC Feature Set – Specific List
ALL OPAL Mandatory Features Supported
Close Session (optional) Supported Allows Tper to notify the host it has aborted a ses-
sion
Restricted Command & Table (optional) Not Supported The interface control template enables TPer control
over selected interface commands; the benefit is
the reduction of undesired side effects
Type Table (not required) Not Supported
Activate Method Supported
Revert Method Supported
Revert SP Method Supported
Activate Method Within Transactions Not Supported As per OPAL, this behavior is out of the scope
Revert Method within Transactions Not Supported As per OPAL, this behavior is out of the scope
Revert SP Method within Transactions Not Supported As per OPAL, this behavior is out of the scope
Creation/Deletion of Tables/Rows after
Manufacturing
Not Supported As per OPAL, this behavior is out of the scope
Tper Feature
COM ID Management Support Not Supported Dynamic COM ID allocation & management not
supported
Buffer Management Support Not Supported Flow control
M600 M.2 Type 2260/2280 NAND Flash SSD
TCG/Opal Support
PDF: 09005aef859ad464
m600_m2_2260_2280_ssd.pdf - Rev. E 3/15 EN
14
Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2014 Micron Technology, Inc. All rights reserved.
Table 13: TCG/Opal Support Parameters (Continued)
Property Supported? Comments
ACK/NACK Support Not Supported Session reliability
Async Support Not Supported Asynchronous protocol support with multiple com-
mands per session
Geometry Reporting Feature
ALIGN Supported OPAL 2.0 (only)
Logical Block Size 512 bytes Logical block size = 512 Bytes
Alignment Granularity 4096 Bytes Page or Descriptor size <<Minimum AES LU size>>
Lowest Aligned LBA 0
OPAL SSC V2.00 Feature Descriptor
Base COM ID 0x1000 0x1000-0xFFFF defined for COM ID management
Number of COM IDs 1
Range Crossing Behavior 0 If drive receives a READ or WRITE command that
spans multiple LBA ranges and the LBA ranges are
not locked, then:
1. Process the data transfer, if Range Crossing = 0
2. Terminate the command with “Other Invalid
Command Parameter” if Range Crossing = 1
Number of Locking SP Admin Authorities
Supported
4 As per OPAL 2.0, drive should support at least 4 ad-
min
Number of Locking SP User Authorities
Supported
16 As per OPAL 2.0, drive should support at least 8
users
Initial C_PIN_SID PIN Indicator 0x00 0x00 = The initial C_PIN_SID PIN value is equal to
the C_PIN_MSID PIN value
0xFF = The initial C_PIN_SID PIN value is VU, and
MAY not be equal to the C_PIN_MSID PIN value
OPAL 2.0 (only)
Customer-specific SID – Configurable
Behavior of C_PIN_SID PIN upon Ter Revert 0x00 0x00 = The C_PIN_SID PIN value becomes the value
of the C_PIN_MSID PIN column after successful in-
vocation of revert on the admin SP’s object in the
SP table
0xFF = The C_PIN_SID PIN value changes to a VU
value after successful invocation of revert on the
admin SP’s object in the SP table and MAY not be
equal to the C_PIN_MSID PIN value OPAL 2.0 (only)
DataStore Table Feature
Maximum number of DataStore Tables 16 The maximum number of the DataStore tables that
the TPer supports, including the DataStore table
defined in OPAL SSC 2.0
Maximum total size of DataStore Tables 90MB Specifies the maximum total size in bytes of all of
the DataStore tables that TPer supports, including
the DataStore table defined in OPAL SSC 2.0
MBR Table 128MB
M600 M.2 Type 2260/2280 NAND Flash SSD
TCG/Opal Support
PDF: 09005aef859ad464
m600_m2_2260_2280_ssd.pdf - Rev. E 3/15 EN
15
Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2014 Micron Technology, Inc. All rights reserved.

MTFDDAV512MBF-1AN12ABYY

Mfr. #:
Manufacturer:
Micron
Description:
SSD 512GB M.2 MLC SATA III 3.3V
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union