10
FN9040.2
October 4, 2005
Input Voltage Range
The ISL6440 is designed to operate from input supplies
ranging from 4.5V to 24V. However, the input voltage range
can be effectively limited by the available maximum duty
cycle (D
MAX
= 93%).
where,
Vd1 = Sum of the parasitic voltage drops in the inductor
discharge path, including the lower FET, inductor and PC
board.
Vd2 = Sum of the voltage drops in the charging path,
including the upper FET, inductor and PC board resistances.
The maximum input voltage and minimum output voltage is
limited by the minimum on-time (t
ON(min)
).
where, t
ON(min)
= 30ns
Gate Control Logic
The gate control logic translates generated PWM signals
into gate drive signals providing amplification, level shifting
and shoot-through protection. The gate drivers have some
circuitry that helps optimize the ICs performance over a wide
range of operational conditions. As MOSFET switching
times can vary dramatically from type to type and with input
voltage, the gate control logic provides adaptive dead time
by monitoring real gate waveforms of both the upper and the
lower MOSFETs. Shoot-through control logic provides a
20ns deadtime to ensure that both the upper and lower
MOSFETs will not turn on simultaneously and cause a shoot-
through condition.
Gate Drivers
The low-side gate driver is supplied from VCC5 and provides
a peak sink/source current of 400mA. The high-side gate
driver is also capable of 400mA current. Gate-drive voltages
for the upper N-Channel MOSFET are generated by the
flying capacitor boot circuit. A boot capacitor connected from
the BOOT pin to the PHASE node provides power to the
high side MOSFET driver. To limit the peak current in the IC,
an external resistor may be placed between the UGATE pin
and the gate of the external MOSFET. This small series
resistor also damps any oscillations caused by the resonant
tank of the parasitic inductances in the traces of the board
and the FET’s gate to drain capacitance.
At start-up the low-side MOSFET turns on and forces
PHASE to ground in order to charge the BOOT capacitor to
5V. After the low-side MOSFET turns off, the high-side
MOSFET is turned on by closing an internal switch between
BOOT and UGATE. This provides the necessary gate-to-
source voltage to turn on the upper MOSFET, an action that
boosts the 5V gate drive signal above VIN. The current
required to drive the upper MOSFET is drawn from the
internal 5V regulator.
Protection Circuits
The converter output is monitored and protected against
overload, short circuit and undervoltage conditions. A
sustained overload on the output sets the PGOOD low and
initiates hiccup mode.
Both PWM controllers use the lower MOSFET’s on-
resistance, r
DS(ON)
, to monitor the current in the converter.
The sensed voltage drop is compared with a threshold set by
a resistor connected from the OCSETx pin to ground.
where, I
OC
is the desired overcurrent protection threshold,
and R
CS
is a value of the current sense resistor connected
to the ISENx pin. If the lower MOSFET current exceeds the
overcurrent threshold, an overcurrent condition is detected.
If overcurrent is detected for 2 consecutive clock cycles then
the IC enters a hiccup mode by turning off the gate drivers
and entering into soft-start. The IC will cycle 2 times through
soft-start before trying to restart. The IC will continue to cycle
through soft-start until the overcurrent condition is removed.
Because of the nature of this current sensing technique, and
to accommodate a wide range of r
DS(ON)
variations, the
value of the overcurrent threshold should represent an
overload current about 150% to 180% of the maximum
operating current. If more accurate current protection is
desired place a current sense resistor in series with the
lower MOSFET source.
V
IN min()
V
OUT
V
d1
+
0.93
--------------------------------


V
d2
V
d1
+=
V
IN max()
V
OUT
t
ON min()
300kHz×
--------------------------------------------------- -
BOOT
UGATE
PHASE
VCC5
VIN
ISL6440
FIGURE 15.
R
OCSET
7()R
CS
()
I
OC
()R
DS on()
()
-------------------------------------------=
ISL6440
11
FN9040.2
October 4, 2005
Over-Temperature Protection
The IC incorporates an over-temperature protection circuit
that shuts the IC down when a die temperature of 150°C is
reached. Normal operation resumes when the die
temperatures drops below 130°C through the initiation of a
full soft-start cycle.
Feedback Loop Compensation
To reduce the number of external components and to
simplify the process of determining compensation
components, both PWM controllers have internally
compensated error amplifiers. To make internal
compensation possible several design measures were
taken.
First, the ramp signal applied to the PWM comparator is
proportional to the input voltage provided via the VIN pin.
This keeps the modulator gain constant with variation in the
input voltage. Second, the load current proportional signal is
derived from the voltage drop across the lower MOSFET
during the PWM
time interval and is subtracted from the
amplified error signal on the comparator input. This creates
an internal current control loop. The resistor connected to
the ISEN pin sets the gain in the current feedback loop. The
following expression estimates the required value of the
current sense resistor depending on the maximum operating
load current and the value of the MOSFET’s r
DS(ON)
.
Choosing R
CS
to provide 32µA of current to the current
sample and hold circuitry is recommended at typical max
load levels, but values down to 2µA and up to 100µA can be
used.
Due to the current loop feedback, the modulator has a single
pole response with -20dB slope at a frequency determined
by the load.
where R
O
is load resistance and C
O
is load capacitance. For
this type of modulator, a Type 2 compensation circuit is
usually sufficient.
Figure 16 shows a Type 2 amplifier and its response along
with the responses of the current mode modulator and the
converter. The Type 2 amplifier, in addition to the pole at
origin, has a zero-pole pair that causes a flat gain region at
frequencies in between the zero and the pole.
The zero frequency, the amplifier high-frequency gain, and
the modulator gain are chosen to satisfy most typical
applications. The crossover frequency will appear at the
point where the modulator attenuation equals the amplifier
high frequency gain. The only task that the system designer
has to complete is to specify the output filter capacitors to
position the load main pole somewhere within one decade
lower than the amplifier zero frequency. With this type of
compensation plenty of phase margin is easily achieved due
to zero-pole pair phase ‘boost’.
Conditional stability may occur only when the main load pole
is positioned too much to the left side on the frequency axis
due to excessive output filter capacitance. In this case, the
ESR zero placed within the 1.2kHz to 30kHz range gives
some additional phase ‘boost’. Some phase boost can also
be achieved by connecting capacitor C
Z
in parallel with the
upper resistor R1 of the divider that sets the output voltage
value. Please refer to the output inductor and capacitor
selection sections for further details.
Layout Guidelines
Careful attention to layout requirements is necessary for
successful implementation of a ISL6440 based DC/DC
converter. The ISL6440 switches at a very high frequency
and therefore the switching times are very short. At these
switching frequencies, even the shortest trace has
significant impedance. Also the peak gate drive current rises
significantly in extremely short time. Transition speed of the
current from one device to another causes voltage spikes
across the interconnecting impedances and parasitic circuit
elements. These voltage spikes can degrade efficiency,
generate EMI, increase device overvoltage stress and
R
CS
I
MAX
()R
DSon)
()
32µA
---------------------------------------------
F
PO
1
2π R
O
C
O
⋅⋅
---------------------------------
,=
F
Z
1
2π R
2
C
1
⋅⋅
------------------------------ - 6kHz==
F
P
1
2π R
1
C
2
⋅⋅
------------------------------ - 600kHz==
FIGURE 16. FEEDBACK LOOP COMPENSATION
R1
R2
C1
C2
F
PO
F
Z
F
P
F
C
MODULATOR
EA
CONVERTER
TYPE 2 EA
G
EA
= 18dB
G
M
= 17.5dB
ISL6440
12
FN9040.2
October 4, 2005
ringing. Careful component selection and proper PC board
layout minimizes the magnitude of these voltage spikes.
There are two sets of critical components in a DC/DC
converter using the ISL6440. The switching power
components and the small signal components. The
switching power components are the most critical from a
layout point of view because they switch a large amount of
energy so they tend to generate a large amount of noise.
The critical small signal components are those connected to
sensitive nodes or those supplying critical bias currents. A
multi-layer printed circuit board is recommended.
Layout Considerations
1. The Input capacitors, Upper FET, Lower FET, Inductor
and Output capacitor should be placed first. Isolate these
power components on the topside of the board with their
ground terminals adjacent to one another. Place the input
high frequency decoupling ceramic capacitor very close
to the MOSFETs. Making the gate traces as short and
thick as possible will limit the parasitic inductance and
reduce the level of dv/dt seen at the gate of the lower
FETs when the upper FET turns on.
2. Use separate ground planes for power ground and small
signal ground. Connect the SGND and PGND together
close of the IC. Do not connect them together anywhere
else.
3. The loop formed by Input capacitor, the top FET and the
bottom FET must be kept as small as possible.
4. Insure the current paths from the input capacitor to the
MOSFET; to the output inductor and output capacitor are
as short as possible with maximum allowable trace
widths.
5. Place The PWM controller IC close to lower FET. The
LGATE connection should be short and wide. The IC can
be best placed over a quiet ground area. Avoid switching
ground loop current in this area.
6. Place VCC5 bypass capacitor very close to VCC5 pin of
the IC and connect its ground to the PGND plane.
7. Place the gate drive components BOOT diode and BOOT
capacitors together near controller IC.
8. The output capacitors should be placed as close to the
load as possible. Use short wide copper regions to
connect output capacitors to load to avoid inductance and
resistances.
9. Use copper filled polygons or wide but short trace to
connect junction of upper FET. Lower FET and output
inductor. Also keep the PHASE node connection to the IC
short. Do not unnecessary oversize the copper islands for
PHASE node. Since the phase nodes are subjected to
very high dv/dt voltages, the stray capacitor formed
between these islands and the surrounding circuitry will
tend to couple switching noise.
10. Route all high speed switching nodes away from the
control circuitry.
11. Create separate small analog ground plane near the IC.
Connect SGND pin to this plane. All small signal
grounding paths including feedback resistors, current
limit setting resistors, SDx pull down resistors should be
connected to this SGND plane.
12. Ensure the feedback connection to output capacitor is
short and direct.
Component Selection Guidelines
MOSFET Considerations
The logic level MOSFETs are chosen for optimum efficiency
given the potentially wide input voltage range and output
power requirements. Two N-Channel MOSFETs are used in
each of the synchronous-rectified buck converters for the
PWM1 and PWM2 outputs. These MOSFETs should be
selected based upon r
DS(ON)
, gate supply requirements,
and thermal management considerations.
The power dissipation includes two loss components;
conduction loss and switching loss. These losses are
distributed between the upper and lower MOSFETs
according to duty cycle (see the following equations). The
conduction losses are the main component of power
dissipation for the lower MOSFETs. Only the upper MOSFET
has significant switching losses, since the lower device turns
on and off into near zero voltage. The equations assume
linear voltage-current transitions and do not model power
loss due to the reverse-recovery of the lower MOSFET’s
body diode.
A large gate-charge increases the switching time, t
SW
,
which increases the upper MOSFET switching losses.
Ensure that both MOSFETs are within their maximum
junction temperature at high ambient temperature by
calculating the temperature rise according to package
thermal-resistance specifications.
Output Capacitor Selection
The output capacitors for each output have unique
requirements. In general, the output capacitors should be
selected to meet the dynamic regulation requirements
including ripple voltage and load transients. Selection of
output capacitors is also dependent on the output inductor,
so some inductor analysis is required to select the output
capacitors.
One of the parameters limiting the converter’s response to a
load transient is the time required for the inductor current to
slew to it’s new level. The ISL6440 will provide either 0% or
71% duty cycle in response to a load transient.
P
UPPER
I
O
2
()r
DS ON()
()V
OUT
()
V
IN
---------------------------------------------------------------
I
O
()V
IN
()t
SW
()F
SW
()
2
------------------------------------------------------------+=
P
LOWER
I
O
2
()r
DS ON()
()V
IN
V
OUT
()
V
IN
-------------------------------------------------------------------------------=
ISL6440

ISL6440IAZ

Mfr. #:
Manufacturer:
Renesas / Intersil
Description:
Switching Controllers DUAL PWM CONTRLR+LIN EAR CONTRLR 300KHZ
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union