LPC2364_65_66_67_68 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.
Product data sheet Rev. 7.1 — 16 October 2013 25 of 69
NXP Semiconductors
LPC2364/65/66/67/68
Single-chip 16-bit/32-bit microcontrollers
Double buffer implementation for Bulk and Isochronous endpoints.
7.11 CAN controller and acceptance filters (LPC2364/66/68 only)
The Controller Area Network (CAN) is a serial communications protocol which efficiently
supports distributed real-time control with a very high level of security. Its domain of
application ranges from high-speed networks to low cost multiplex wiring.
The CAN block is intended to support multiple CAN buses simultaneously, allowing the
device to be used as a gateway, switch, or router among a number of CAN buses in
industrial or automotive applications.
Each CAN controller has a register structure similar to the NXP SJA1000 and the PeliCAN
Library block, but the 8-bit registers of those devices have been combined in 32-bit words
to allow simultaneous access in the ARM environment. The main operational difference is
that the recognition of received Identifiers, known in CAN terminology as Acceptance
Filtering, has been removed from the CAN controllers and centralized in a global
Acceptance Filter.
7.11.1 Features
Two CAN controllers and buses.
Data rates to 1 Mbit/s on each bus.
32-bit register and RAM access.
Compatible with CAN specification 2.0B, ISO 11898-1.
Global Acceptance Filter recognizes 11-bit and 29-bit receive identifiers for all CAN
buses.
Acceptance Filter can provide FullCAN-style automatic reception for selected
Standard Identifiers.
FullCAN messages can generate interrupts.
7.12 10-bit ADC
The LPC2364/65/66/67/68 contain one ADC. It is a single 10-bit successive
approximation ADC with six channels.
7.12.1 Features
10-bit successive approximation ADC.
Input multiplexing among 6 pins.
Power-down mode.
Measurement range 0 V to V
i(VREF)
.
10-bit conversion time 2.44 s.
Burst conversion mode for single or multiple inputs.
Optional conversion on transition of input pin or Timer Match signal.
Individual result registers for each ADC channel to reduce interrupt overhead.
LPC2364_65_66_67_68 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.
Product data sheet Rev. 7.1 — 16 October 2013 26 of 69
NXP Semiconductors
LPC2364/65/66/67/68
Single-chip 16-bit/32-bit microcontrollers
7.13 10-bit DAC
The DAC allows the LPC2364/65/66/67/68 to generate a variable analog output. The
maximum output value of the DAC is V
i(VREF)
.
7.13.1 Features
10-bit DAC
Resistor string architecture
Buffered output
Power-down mode
Selectable output drive
7.14 UARTs
The LPC2364/65/66/67/68 each contain four UARTs. In addition to standard transmit and
receive data lines, UART1 also provides a full modem control handshake interface.
The UARTs include a fractional baud rate generator. Standard baud rates such as
115200 Bd can be achieved with any crystal frequency above 2 MHz.
7.14.1 Features
16 B Receive and Transmit FIFOs.
Register locations conform to 16C550 industry standard.
Receiver FIFO trigger points at 1 B, 4 B, 8 B, and 14 B.
Built-in fractional baud rate generator covering wide range of baud rates without a
need for external crystals of particular values.
Fractional divider for baud rate control, auto baud capabilities and FIFO control
mechanism that enables software flow control implementation.
UART1 equipped with standard modem interface signals. This module also provides
full support for hardware flow control (auto-CTS/RTS).
UART3 includes an IrDA mode to support infrared communication.
7.15 SPI serial I/O controller
The LPC2364/65/66/67/68 each contain one SPI controller. SPI is a full duplex serial
interface designed to handle multiple masters and slaves connected to a given bus. Only
a single master and a single slave can communicate on the interface during a given data
transfer. During a data transfer the master always sends 8 bits to 16 bits of data to the
slave, and the slave always sends 8 bits to 16 bits of data to the master.
7.15.1 Features
Compliant with SPI specification
Synchronous, serial, full duplex communication
Combined SPI master and slave
Maximum data bit rate of one eighth of the input clock rate
8 bits to 16 bits per transfer
LPC2364_65_66_67_68 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.
Product data sheet Rev. 7.1 — 16 October 2013 27 of 69
NXP Semiconductors
LPC2364/65/66/67/68
Single-chip 16-bit/32-bit microcontrollers
7.16 SSP serial I/O controller
The LPC2364/65/66/67/68 each contain two SSP controllers. The SSP controller is
capable of operation on a SPI, 4-wire SSI, or Microwire bus. It can interact with multiple
masters and slaves on the bus. Only a single master and a single slave can communicate
on the bus during a given data transfer. The SSP supports full duplex transfers, with
frames of 4 bits to 16 bits of data flowing from the master to the slave and from the slave
to the master. In practice, often only one of these data flows carries meaningful data.
7.16.1 Features
Compatible with Motorola SPI, 4-wire Texas Instruments SSI, and National
Semiconductor Microwire buses
Synchronous serial communication
Master or slave operation
8-frame FIFOs for both transmit and receive
4-bit to 16-bit frame
DMA transfers supported by GPDMA
7.17 SD/MMC card interface (LPC2367/68 only)
The Secure Digital and Multimedia Card Interface (MCI) allows access to external SD
memory cards. The SD card interface conforms to the SD Multimedia Card Specification
Version 2.11.
7.17.1 Features
The MCI interface provides all functions specific to the SD/MMC memory card. These
include the clock generation unit, power management control, and command and data
transfer.
Conforms to Multimedia Card Specification v2.11.
Conforms to Secure Digital Memory Card Physical Layer Specification, v0.96.
Can be used as a multimedia card bus or a secure digital memory card bus host. The
SD/MMC can be connected to several multimedia cards or a single secure digital
memory card.
DMA supported through the GPDMA controller.
7.18 I
2
C-bus serial I/O controllers
The LPC2364/65/66/67/68 each contain three I
2
C-bus controllers.
The I
2
C-bus is bidirectional, for inter-IC control using only two wires: a serial clock line
(SCL), and a serial data line (SDA). Each device is recognized by a unique address and
can operate as either a receiver-only device (e.g., an LCD driver) or a transmitter with the
capability to both receive and send information (such as memory). Transmitters and/or
receivers can operate in either master or slave mode, depending on whether the chip has
to initiate a data transfer or is only addressed. The I
2
C is a multi-master bus, it can be
controlled by more than one bus master connected to it.
The I
2
C-bus implemented in LPC2364/65/66/67/68 supports bit rates up to 400 kbit/s
(Fast I
2
C-bus).

LPC2368FBD100,551

Mfr. #:
Manufacturer:
NXP Semiconductors
Description:
ARM Microcontrollers - MCU ARM7 512KF/USB/ENET
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union