CY7B991
CY7B992
Document #: 38-07138 Rev. ** Page 10 of 15
Operational Mode Descriptions
Figure 2 shows the PSCB configured as a zero-skew clock
buffer. In this mode the 7B991/992 can be used as the basis
for a low-skew clock distribution tree. When all of the function
select inputs (xF0, xF1) are left open, the outputs are aligned
and may each drive a terminated transmission line to an inde-
pendent load. The FB input can be tied to any output in this
configuration and the operating frequency range is selected
with the FS pin. The low-skew specification, coupled with the
ability to drive terminated transmission lines (with impedances
as low as 50 ohms), allows efficient printed circuit board de-
sign.
Figure 3 shows a configuration to equalize skew between met-
al traces of different lengths. In addition to low skew between
outputs, the PSCB can be programmed to stagger the timing
of its outputs. The four groups of output pairs can each be
programmed to different output timing. Skew timing can be
adjusted over a wide range in small increments with the appro-
priate strapping of the function select pins. In this configuration
the 4Q0 output is fed back to FB and configured for zero skew.
The other three pairs of outputs are programmed to yield dif-
ferent skews relative to the feedback. By advancing the clock
signal on the longer traces or retarding the clock signal on
shorter traces, all loads can receive the clock pulse at the
same time.
In this illustration the FB input is connected to an output with
0-ns skew (xF1, xF0 = MID) selected. The internal PLL syn-
chronizes the FB and REF inputs and aligns their rising edges
to insure that all outputs have precise phase alignment.
Clock skews can be advanced by ±6 time units (t
U
) when using
an output selected for zero skew as the feedback. A wider range of
delays is possible if the output connected to FB is also skewed.
Since Zero Skew, +t
U
, and t
U
are defined relative to output
groups, and since the PLL aligns the rising edges of REF and FB,
it is possible to create wider output skews by proper selection of the
xFn inputs. For example a +10 t
U
between REF and 3Qx can be
achieved by connecting 1Q0 to FB and setting 1F0 = 1F1 = GND,
Figure 2. Zero-Skew and/or Zero-Delay Clock Driver
SYSTEM
CLOCK
L1
L2
L3
L4
LENGTH L1 = L2 = L3 = L4
7B9919
FB
REF
FS
4F0
4F1
3F0
3F1
2F0
2F1
1F0
1F1
4Q0
4Q1
3Q0
3Q1
2Q0
2Q1
1Q0
1Q1
TEST
Z
0
LOAD
LOAD
LOAD
LOAD
REF
Z
0
Z
0
Z
0
Figure 3. Programmable-Skew Clock Driver
LENGTH L1 = L2
L3 < L2 by 6 inches
L4 > L2 by 6 inches
7B99110
SYS
TEM
CLOCK
L1
L2
L3
L4
FB
REF
FS
4F0
4F1
3F0
3F1
2F0
2F1
1F0
1F1
4Q0
4Q1
3Q0
3Q1
2Q0
2Q1
1Q0
1Q1
TEST
Z
0
LOAD
LOAD
LOAD
LOAD
REF
Z
0
Z
0
Z
0
CY7B991
CY7B992
Document #: 38-07138 Rev. ** Page 11 of 15
3F0 = MID, and 3F1 = High. (Since FB aligns at 4 t
U
and 3Qx
skews to +6 t
U
, a total of +10 t
U
skew is realized.) Many other con-
figurations can be realized by skewing both the output used as the
FB input and skewing the other outputs.
Figure 4 shows an example of the invert function of the PSCB.
In this example the 4Q0 output used as the FB input is pro-
grammed for invert (4F0 = 4F1 = HIGH) while the other three
pairs of outputs are programmed for zero skew. When 4F0 and
4F1 are tied high, 4Q0 and 4Q1 become inverted zero phase
outputs. The PLL aligns the rising edge of the FB input with the
rising edge of the REF. This causes the 1Q, 2Q, and 3Q out-
puts to become the inverted outputs with respect to the REF
input. By selecting which output is connect to FB, it is possible
to have 2 inverted and 6 non-inverted outputs or 6 inverted and
2 non-inverted outputs. The correct configuration would be de-
termined by the need for more (or fewer) inverted outputs. 1Q,
2Q, and 3Q outputs can also be skewed to compensate for
varying trace delays independent of inversion on 4Q.
Figure 5 illustrates the PSCB configured as a clock multiplier.
The 3Q0 output is programmed to divide by four and is fed
back to FB. This causes the PLL to increase its frequency until
the 3Q0 and 3Q1 outputs are locked at 20 MHz while the 1Qx
and 2Qx outputs run at 80 MHz. The 4Q0 and 4Q1 outputs are
programmed to divide by two, which results in a 40-MHz wave-
form at these outputs. Note that the 20- and 40-MHz clocks fall
simultaneously and are out of phase on their rising edge. This
will allow the designer to use the rising edges of the
1
2
fre-
quency and
1
4
frequency outputs without concern for ris-
ing-edge skew. The 2Q0, 2Q1, 1Q0, and 1Q1 outputs run at
80 MHz and are skewed by programming their select inputs
accordingly. Note that the FS pin is wired for 80-MHz operation
because that is the frequency of the fastest output.
Figure 6 demonstrates the PSCB in a clock divider application.
2Q0 is fed back to the FB input and programmed for zero skew.
3Qx is programmed to divide by four. 4Qx is programmed to
divide by two. Note that the falling edges of the 4Qx and 3Qx
outputs are aligned. This allows use of the rising edges of the
1
2
frequency and
1
4
frequency without concern for skew
mismatch. The 1Qx outputs are programmed to zero skew and
are aligned with the 2Qx outputs. In this example, the FS input
is grounded to configure the device in the 15- to 30-MHz range
since the highest frequency output is running at 20 MHz.
Figure 7 shows some of the functions that are selectable on
the 3Qx and 4Qx outputs. These include inverted outputs and
outputs that offer divide-by-2 and divide-by-4 timing. An invert-
ed output allows the system designer to clock different sub-
systems on opposite edges, without suffering from the pulse
asymmetry typical of non-ideal loading. This function allows
the two subsystems to each be clocked 180 degrees out of
phase, but still to be aligned within the skew spec.
The divided outputs offer a zero-delay divider for portions of
the system that need the clock to be divided by either two or
four, and still remain within a narrow skew of the 1X clock.
Without this feature, an external divider would need to be add-
ed, and the propagation delay of the divider would add to the
skew between the different clock signals.
These divided outputs, coupled with the Phase Locked Loop,
allow the PSCB to multiply the clock rate at the REF input by
either two or four. This mode will enable the designer to dis-
tribute a low-frequency clock between various portions of the
system, and then locally multiply the clock rate to a more suit-
able frequency, while still maintaining the low-skew character-
istics of the clock driver. The PSCB can perform all of the func-
tions described above at the same time. It can multiply by two
and four or divide by two (and four) at the same time that it is
shifting its outputs over a wide range or maintaining zero skew
between selected outputs.
Figure 4. Inverted Output Connections
Figure 5. Frequency Multiplier with Skew Connections
7B99111
FB
REF
FS
4F0
4F1
3F0
3F1
2F0
2F1
1F0
1F1
4Q0
4Q1
3Q0
3Q1
2Q0
2Q1
1Q0
1Q1
TEST
REF
7B99112
FB
REF
FS
4F0
4F1
3F0
3F1
2F0
2F1
1F0
1F1
4Q0
4Q1
3Q0
3Q1
2Q0
2Q1
1Q0
1Q1
TEST
REF
20 MHz
20 MHz
40 MHz
80 MHz
Figure 6. Frequency Divider Connections
7B99113
FB
REF
FS
4F0
4F1
3F0
3F1
2F0
2F1
1F0
1F1
4Q0
4Q1
3Q0
3Q1
2Q0
2Q1
1Q0
1Q1
TEST
REF
20 MHz
5 MHz
10 MHz
20 MHz
CY7B991
CY7B992
Document #: 38-07138 Rev. ** Page 12 of 15
Figure 8 shows the CY7B991/992 connected in series to con-
struct a zero-skew clock distribution tree between boards. De-
lays of the downstream clock buffers can be programmed to
compensate for the wire length (i.e., select negative skew
equal to the wire delay) necessary to connect them to the mas-
ter clock source, approximating a zero-delay clock tree. Cas-
caded clock buffers will accumulate low-frequency jitter be-
cause of the non-ideal filtering characteristics of the PLL filter.
It is recommended that not more than two clock buffers be
connected in series.
Figure 7. Multi-Function Clock Driver
Figure 8. Board-to-Board Clock Distribution
20MHz
DISTRIBUTION
CLOCK
80-MHz
INVERTED
Z
0
7B99114
20-MHz
80-MHz
ZERO SKEW
80-MHz
SKEWED 3.125 ns (4t
U
)
FB
REF
FS
4F0
4F1
3F0
3F1
2F0
2F1
1F0
1F1
4Q0
4Q1
3Q0
3Q1
2Q0
2Q1
1Q0
1Q1
TEST
REF
LOAD
LOAD
LOAD
LOAD
Z
0
Z
0
Z
0
SYSTEM
CLOCK
Z
0
L1
L2
L3
L4
7B99115
FB
REF
FS
4F0
4F1
3F0
3F1
2F0
2F1
1F0
1F1
4Q0
4Q1
3Q0
3Q1
2Q0
2Q1
1Q0
1Q1
TEST
REF
4F0
4F1
3F0
3F1
2F0
2F1
1F0
1F1
4Q0
4Q1
3Q0
3Q1
2Q0
2Q1
1Q0
1Q1
REF
FS
FB
LOAD
LOAD
LOAD
LOAD
LOAD
TEST
Z
0
Z
0
Z
0

CY7B991-2JC

Mfr. #:
Manufacturer:
Cypress Semiconductor
Description:
Phase Locked Loops - PLL 5V 80MHz 8 TLL COM Programable
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union

Products related to this Datasheet