7
FN7306.7
August 25, 2010
FIGURE 9. FREQUENCY RESPONSE FOR V
REF
FIGURE 10. OPEN LOOP GAIN
FIGURE 11. OUTPUT IMPEDANCE vs FREQUENCY FIGURE 12. PSRR vs FREQUENCY
FIGURE 13. CMRR vs FREQUENCY FIGURE 14. VOLTAGE AND CURRENT NOISE vs FREQUENCY
Typical Performance Curves (Continued)
1M 10M 100M 1G
FREQUENCY (Hz)
NORMALIZED GAIN (dB)
4
2
0
-2
-4
-6
R
L
= 500Ω
A
V
= 1
C
L
= 2.7pF
V
S
= ±2.5V
V
S
= ±5V
GAIN (dB)
60
40
20
0
-20
-40
10k 100k 10M
FREQUENCY (Hz)
1M 100M 1G
PHASE (°)
90
0
-90
-180
-270
-360
10k 100k 1M 100M
FREQUENCY (Hz)
IMPEDANCE (Ω)
100
10
1
0.1
10M
PSRR (dB)
30
10
-10
-50
-70
-90
10k 100k 10M
FREQUENCY (Hz)
1M 100M
PSRR+
PSRR-
-30
CMRR (dB)
120
100
80
40
20
-90
1k 10k 10M
FREQUENCY (Hz)
1M 1G
60
100M100k
E
N
I
N
VOLTAGE NOISE (nV/Hz),
CURRENT NOISE (pA/Hz)
1k
100
10
1
10 100 100k
FREQUENCY (Hz)
10k 10M1M1k
EL5175, EL5375
8
FN7306.7
August 25, 2010
FIGURE 15. CHANNEL ISOLATION vs FREQUENCY
(EL5375 ONLY)
FIGURE 16. HARMONIC DISTORTION vs OUTPUT VOLTAGE
FIGURE 17. HARMONIC DISTORTION vs LOAD RESISTANCE FIGURE 18. HARMONIC DISTORTION vs FREQUENCY
FIGURE 19. SMALL SIGNAL TRANSIENT RESPONSE FIGURE 20. LARGE SIGNAL TRANSIENT RESPONSE
Typical Performance Curves (Continued)
GAIN (dB)
0
-20
-60
-80
-100
100k 1M
FREQUENCY (Hz)
100M 1G
-40
10M
CH1 CH2, CH2 CH3
CH1 CH3
V
S
= ±5V
f = 5MHz
R
L
= 500Ω
1357
V
OP-P
(V)
DISTORTION (dB)
-40
-50
-60
-70
-80
-100
H
D
2
(
A
V
=
2
)
246
-90
H
D
2
(
A
V
=
1
)
H
D
3
(
A
V
=
2
)
H
D
3
(
A
V
=
1
)
HD2 (A
V
= 2)
H
D
3
(
A
V
=
2
)
H
D
3
(
A
V
=
1
)
100 400 800 1k
R
LOAD
(Ω)
DISTORTION (dB)
-50
-100
200 600 900500300 700
-60
-70
-80
-90
H
D
2
(
A
V
=
1
)
V
S
= ±5V
f = 5MHz
V
OP-P
= 1V (A
V
= 1)
V
OP-P
= 2V (A
V
= 2)
H
D
2
(
A
V
=
2
)
015 3540
R
LOAD
(Ω)
DISTORTION (dB)
-50
-100
5252010 30
-60
-70
-80
-90
V
S
= ±5V
R
L
= 500Ω
V
OP-P
= 1V (A
V
= 1)
V
OP-P
= 2V (A
V
= 2)
H
D
2
(
A
V
=
1
)
H
D
3
(
A
V
=
2
)
H
D
3
(
A
V
=
1
)
10ns/DIV
50mV/DIV
10ns/DIV
0.5V/DIV
EL5175, EL5375
9
FN7306.7
August 25, 2010
Simplified Schematic
FIGURE 21. ENABLED RESPONSE FIGURE 22. DISABLED RESPONSE
FIGURE 23. PACKAGE POWER DISSIPATION vs AMBIENT
TEMPERATURE
FIGURE 24. PACKAGE POWER DISSIPATION vs AMBIENT
TEMPERATURE
Typical Performance Curves (Continued)
100ns/DIV
CH1
CH2
M = 100ns
CH1 = 200mV/DIV
CH2 = 5V/DIV
400ns/DIV
CH1
CH2
M = 400ns
CH1 = 200mV/DIV
CH2 = 5V/DIV
JEDEC JESD51-3 LOW EFFECTIVE THERMAL
CONDUCTIVITY TEST BOARD
870mW
625mW
486mW
QSOP24
θ
JA
= +115°C/W
MSOP8
θ
JA
= +206°C/W
0
AMBIENT TEMPERATURE (°C)
25 125 15085 10050 75
POWER DISSIPATION (W)
1.2
1.0
0.2
0
0.6
0.4
0.8
SO8
θ
JA
= +160°C/W
JEDEC JESD51-7 HIGH EFFECTIVE THERMAL
CONDUCTIVITY TEST BOARD
0
AMBIENT TEMPERATURE (°C)
POWER DISSIPATION (W)
1.4
25 125 15085 10050 75
1.2
0.2
0
0.6
0.4
1.0
0.8
1.136W
909mW
870mW
MSOP8
θ
JA
= +115°C/W
QSOP24
θ
JA
= +88°C/W
SO8
θ
JA
= +110°C/W
R
2
R
1
R
4
R
3
R
D2
R
D1
Q
8
FB
Q
4
V
REF
Q
3
VIN-
Q
2
VIN+
Q
1
Q
6
V
S
+
I
4
I
3
I
2
I
1
Q
7
V
B1
V
S
-
25
Q
9
V
B2
x1 V
OUT
C
C
EL5175, EL5375

EL5175ISZ-T13

Mfr. #:
Manufacturer:
Renesas / Intersil
Description:
Differential Amplifiers EL5175ISZ 500MHZCVR
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union