REV. B
AD7663
–18–
t
3
BUSY
CS
,
RD
CNVST
SYNC
SCLK
SDOUT
t
28
t
29
t
14
t
18
t
19
t
20
t
21
t
24
t
26
t
27
t
23
t
22
t
16
t
15
123 141516
D15 D14
D2 D1 D0
X
EXT/
INT
= 0
RDC/SDIN = 0 INVSCLK = INVSYNC = 0
t
25
t
30
Figure 17. Master Serial Data Timing for Reading (Read after Convert)
EXT/
INT
= 0
RDC/SDIN = 1 INVSCLK = INVSYNC = 0
t
3
t
1
t
17
t
14
t
19
t
20
t
21
t
24
t
26
t
25
t
27
t
23
t
22
t
16
t
15
D15 D14 D2 D1 D0X
12 3 141516
t
18
BUSY
SYNC
SCLK
SDOUT
CS
,
RD
CNVST
Figure 18. Master Serial Data Timing for Reading (Read Previous Conversion during Convert)
REV. B
AD7663
–19–
CS
SCLK
SDOUT
D15 D14 D1
D0
D13
X15 X14 X13 X1 X0 Y15 Y14
BUSY
SDIN
INVSCLK = 0
t
35
t
36
t
37
t
31
t
32
t
16
t
33
t
34
X15 X14
X
123 1415161718
EXT/INT = 1
RD = 0
Figure 19. Slave Serial Data Timing for Reading (Read after Convert)
SLAVE SERIAL INTERFACE
External Clock
The AD7663 is configured to accept an externally supplied
serial data clock on the SCLK pin when the EXT/INT pin is
held HIGH. In this mode, several methods can be used to read
the data. The external serial clock is gated by CS and the data
are output when both CS and RD are LOW. Thus, depending
on CS, the data can be read after each conversion or during the
following conversion. The external clock can be either a continu-
ous or discontinuous clock. A discontinuous clock can be either
normally high or normally low when inactive. Figures 19 and 21
show the detailed timing diagrams of these methods.
While the AD7663 is performing a bit decision, it is important
that voltage transients not occur on digital input/output pins or
degradation of the conversion result could occur. This is par-
ticularly important during the second half of the conversion
phase because the AD7663 provides error correction circuitry
that can correct for an improper bit decision made during the first
half of the conversion phase. For this reason, it is recommended
that when an external clock is being provided, it is a discontinuous
clock that is toggling only when BUSY is LOW or, more
importantly, that does not transition during the latter half of
BUSY HIGH.
External Discontinuous Clock Data Read after Conversion
This mode is the most recommended of the serial slave modes.
Figure 19 shows the detailed timing diagrams of this method.
After a conversion is complete, indicated by BUSY returning
LOW, the result of this conversion can be read while both CS and
RD are LOW. The data is shifted out, MSB first, with 16 clock
pulses and is valid on both the rising and falling edge of the clock.
Among the advantages of this method, the conversion performance
is not degraded because there are no voltage transients on the
digital interface during the conversion process.
Another advantage is to be able to read the data at any speed up
to 40 MHz, which accommodates both slow digital host interface
and the fastest serial reading.
Finally, in this mode only, the AD7663 provides a daisy-chain
feature using the RDC/SDIN input pin for cascading multiple
converters together. This feature is useful for reducing component
count and wiring connections when desired as, for instance, in
isolated multiconverter applications.
An example of the concatenation of two devices is shown in
Figure 20. Simultaneous sampling is possible by using a com-
mon CNVST signal. It should be noted that the RDC/SDIN
input is latched on the opposite edge of SCLK of the one used
to shift out the data on SDOUT. Therefore, the MSB of the
upstream converter just follows the LSB of the downstream
converter on the next SCLK cycle.
CNVST
CS
SCLK
SDOUTRDC/SDIN
BUSYBUSY
DATA
OUT
AD7663
#1
(DOWNSTREAM)
BUSY
OUT
CNVST
CS
SCLK
AD7663
#2
(UPSTREAM)
RDC/SDIN SDOUT
SCLK IN
CS IN
CNVST IN
Figure 20. Two AD7663s in a Daisy-Chain Configuration
REV. B
AD7663
–20–
CNVST
SDOUT
SCLK
D1 D0X D15 D14 D13
12 3 141516
t
3
t
35
t
36
t
37
t
31
t
32
t
16
BUSY
INVSCLK = 0
CS
EXT/INT = 1
RD = 0
Figure 21. Slave Serial Data Timing for Reading (Read Previous Conversion during Convert)
External Clock Data Read during Conversion
Figure 21 shows the detailed timing diagrams of this method.
During a conversion, while both CS and RD are LOW, the result
of the previous conversion can be read. The data is shifted out
MSB first with 16 clock pulses, and is valid on both the rising and
the falling edge of the clock. The 16 bits have to be read before
the current conversion is complete. If that is not done, RDERROR
is pulsed HIGH and can be used to interrupt the host interface
to prevent an incomplete data reading. There is no daisy-chain
feature in this mode, and RDC/SDIN input should always be
tied either HIGH or LOW.
To reduce performance degradation due to digital activity, a
fast discontinuous clock of at least 25 MHz is recommended to
ensure that all the bits are read during the first half of the conver-
sion phase.
MICROPROCESSOR INTERFACING
The AD7663 is ideally suited for traditional dc measurement
applications supporting a microprocessor and ac signal processing
applications interfacing to a digital signal processor. The
AD7663 is designed to interface with either a parallel 8-bit or
16-bit wide interface or with a general-purpose Serial Port or I/O
Ports on a microcontroller. A variety of external buffers can be
used with the AD7663 to prevent digital noise from coupling into
the ADC. The following sections illustrate the use of the AD7663
with an SPI equipped microcontroller, the ADSP-21065L and
ADSP-218x signal processors.
SPI Interface (MC68HC11)
Figure 22 shows an interface diagram between the AD7663 and an
SPI-equipped microcontroller, such as the MC68HC11. To
accommodate the slower speed of the microcontroller, the AD7663
acts as a slave device and data must be read after conversion. This
mode also allows the daisy-chain feature. The convert command
could be initiated in response to an internal timer interrupt. The
reading of output data, one byte at a time if necessary, could be
initiated in response to the end-of-conversion signal (BUSY going
LOW) using an interrupt line of the microcontroller. The serial
peripheral interface (SPI) on the MC68HC11 is configured for
Master Mode (MSTR) = 1, Clock Polarity Bit (CPOL) = 0, Clock
Phase Bit (CPHA) = 1, and SPI interrupt enable (SPIE) = 1
by writing to the SPI Control Register (SPCR). The IRQ is
configured for edge-sensitive-only operation (IRQE = 1 in
OPTION register).
IRQ
MC68HC11*
CNVST
AD7663*
BUSY
CS
MISO/SDI
SCK
I/O PORT
SDOUT
SCLK
INVSCLK
EXT/INT
DVDD
*ADDITIONAL PINS OMITTED FOR CLARITY
SER/PAR
RD
Figure 22. Interfacing the AD7663 to SPI Interface
ADSP-21065L in Master Serial Interface
As shown in Figure 23, the AD7663 can be interfaced to the
ADSP-21065L using the serial interface in Master Mode without
any glue logic required. This mode combines the advantages of
reducing the wire connections and being able to read the data during
or after conversion at maximum speed transfer (DIVSCLK[0:1]
both low.
The AD7663 is configured for the Internal Clock Mode (EXT/INT
low) and acts therefore as the master device. The convert com-
mand can be generated by an external low jitter oscillator or, as
shown, by a FLAG output of the ADSP-21065L, or by a frame
output TFS of one Serial Port of the ADSP-21065L that can be used
like a timer. The Serial Port on the ADSP-21065L is configured
for external clock (IRFS = 0), rising edge active (CKRE = 1),
external late framed sync signals (IRFS = 0, LAFS = 1,
RFSR = 1), and active HIGH (LRFS = 0). The Serial Port of
the ADSP-21065L is configured by writing to its receive control
register (SRCTL)see ADSP-2106x SHARC Users Manual.

AD7663ASTZ

Mfr. #:
Manufacturer:
Analog Devices Inc.
Description:
Analog to Digital Converters - ADC 16-Bit Bipolar 250kSPS CMOS
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union

Products related to this Datasheet