IDT72V261LA/72V271LA
3.3 VOLT CMOS SuperSync FIFO™ 16,384 x 9 and 32,768 x 9
13
COMMERCIAL AND INDUSTRIAL
TEMPERATURE RANGES
WRITE CLOCK (WCLK)
A write cycle is initiated on the rising edge of the WCLK input. Data
setup and hold times must be met with respect to the LOW-to-HIGH
transition of the WCLK. It is permissible to stop the WCLK. Note that
while WCLK is idle, the FF/IR, PAF and HF flags will not be updated.
(Note that WCLK is only capable of updating HF flag to LOW.) The
Write and Read Clocks can either be independent or coincident.
WRITE ENABLE (WEN)
When the WEN input is LOW, data may be loaded into the FIFO
RAM array on the rising edge of every WCLK cycle if the device is not
full. Data is stored in the RAM array sequentially and independently of
any ongoing read operation.
When WEN is HIGH, no new data is written in the RAM array on
each WCLK cycle.
To prevent data overflow in the IDT Standard mode, FF will go LOW,
inhibiting further write operations. Upon the completion of a valid read
cycle, FF will go HIGH allowing a write to occur. The FF is updated by
two WCLK cycles + tSKEW after the RCLK cycle.
To prevent data overflow in the FWFT mode, IR will go HIGH,
inhibiting further write operations. Upon the completion of a valid read
cycle, IR will go LOW allowing a write to occur. The IR flag is updated
by two WCLK cycles + tSKEW after the valid RCLK cycle.
WEN is ignored when the FIFO is full in either FWFT or IDT Standard
mode.
READ CLOCK (RCLK)
A read cycle is initiated on the rising edge of the RCLK input. Data
can be read on the outputs, on the rising edge of the RCLK input. It is
permissible to stop the RCLK. Note that while RCLK is idle, the EF/OR,
PAE and HF flags will not be updated. (Note that RCLK is only capable
of updating the HF flag to HIGH.) The Write and Read Clocks can be
independent or coincident.
READ ENABLE (REN)
When Read Enable is LOW, data is loaded from the RAM array into
the output register on the rising edge of every RCLK cycle if the device
is not empty.
When the REN input is HIGH, the output register holds the previous
data and no new data is loaded into the output register. The data
outputs Q0-Qn maintain the previous data value.
In the IDT Standard mode, every word accessed at Qn, including the
first word written to an empty FIFO, must be requested using REN.
When the last word has been read from the FIFO, the Empty Flag (EF)
will go LOW, inhibiting further read operations. REN is ignored when
the FIFO is empty. Once a write is performed, EF will go HIGH allowing
a read to occur. The EF flag is updated by two RCLK cycles + tSKEW
after the valid WCLK cycle.
In the FWFT mode, the first word written to an empty FIFO automati-
cally goes to the outputs Qn, on the third valid LOW to HIGH transition
of RCLK + tSKEW after the first write. REN does not need to be
asserted LOW. In order to access all other words, a read must be
executed using REN. The RCLK LOW to HIGH transition after the last
word has been read from the FIFO, Output Ready (OR) will go HIGH
with a true read (RCLK with REN = LOW), inhibiting further read opera-
tions. REN is ignored when the FIFO is empty.
SERIAL ENABLE (SEN)
The SEN input is an enable used only for serial programming of the
offset registers. The serial programming method must be selected
during Master Reset. SEN is always used in conjunction with LD.
When these lines are both LOW, data at the SI input can be loaded into
the program register one bit for each LOW-to-HIGH transition of WCLK.
(See Figure 4.)
When SEN is HIGH, the programmable registers retains the previous
settings and no offsets are loaded. SEN functions the same way in
both IDT Standard and FWFT modes.
OUTPUT ENABLE (OE)
When Output Enable is enabled (LOW), the parallel output buffers
receive data from the output register. When OE is HIGH, the output
data bus (Qn) goes into a high impedance state.
LOAD (LD)
This is a dual purpose pin. During Master Reset, the state of the LD
input determines one of two default offset values (127 or 1,023) for the
PAE and PAF flags, along with the method by which these offset regis-
ters can be programmed, parallel or serial. After Master Reset, LD
enables write operations to and read operations from the offset regis-
ters. Only the offset loading method currently selected can be used to
write to the registers. Offset registers can be read only in parallel. A
LOW on LD during Master Reset selects a default PAE offset value of
07FH (a threshold 127 words from the empty boundary), a default PAF
offset value of 07FH (a threshold 127 words from the full boundary),
and parallel loading of other offset values. A HIGH on LD during
Master Reset selects a default PAE offset value of 3FFH (a threshold
1,023 words from the empty boundary), a default PAF offset value of
3FFH (a threshold 1,023 words from the full boundary), and serial load-
ing of other offset values.
After Master Reset, the LD pin is used to activate the programming
process of the flag offset values PAE and PAF. Pulling LD LOW will
begin a serial loading or parallel load or read of these offset values.
See Figure 4, Programmable Flag Offset Programming Sequence.
OUTPUTS:
FULL FLAG (FF/IR)
This is a dual purpose pin. In IDT Standard mode, the Full Flag (FF)
function is selected. When the FIFO is full, FF will go LOW, inhibiting
further write operations. When FF is HIGH, the FIFO is not full. If no
reads are performed after a reset (either MRS or PRS), FF will go LOW
after D writes to the FIFO (D = 16,384 for the IDT72V261LA and 32,768
for the IDT72V271LA). See Figure 7, Write Cycle and Full Flag Timing
(IDT Standard Mode), for the relevant timing information.
In FWFT mode, the Input Ready (IR) function is selected. IR goes
LOW when memory space is available for writing in data. When there
is no longer any free space left, IR goes HIGH, inhibiting further write
operations. If no reads are performed after a reset (either MRS or
PRS), IR will go HIGH after D writes to the FIFO (D = 16,385 for the
IDT72V261LA and 32,769 for the IDT72V271LA) See Figure 9, Write
Timing (FWFT Mode), for the relevant timing information.
The IR status not only measures the contents of the FIFO memory,
but also counts the presence of a word in the output register. Thus, in
COMMERCIAL AND INDUSTRIAL
TEMPERATURE RANGES
IDT72V261LA/72V271LA
3.3 VOLT CMOS SuperSync FIFO™ 16,384 x 9 and 32,768 x 9
14
FWFT mode, the total number of writes necessary to deassert IR is one
greater than needed to assert FF in IDT Standard mode.
FF/IR is synchronous and updated on the rising edge of WCLK. FF/
IR are double register-buffered outputs.
EMPTY FLAG (EF/OR)
This is a dual purpose pin. In the IDT Standard mode, the Empty
Flag (EF) function is selected. When the FIFO is empty, EF will go
LOW, inhibiting further read operations. When EF is HIGH, the FIFO is
not empty. See Figure 8, Read Cycle, Empty Flag and First Word
Latency Timing (IDT Standard Mode), for the relevant timing informa-
tion.
In FWFT mode, the Output Ready (OR) function is selected. OR
goes LOW at the same time that the first word written to an empty FIFO
appears valid on the outputs. OR stays LOW after the RCLK LOW to
HIGH transition that shifts the last word from the FIFO memory to the
outputs. OR goes HIGH only with a true read (RCLK with REN =
LOW). The previous data stays at the outputs, indicating the last word
was read. Further data reads are inhibited until OR goes LOW again.
See Figure 10, Read Timing (FWFT Mode), for the relevant timing
information.
EF/OR is synchronous and updated on the rising edge of RCLK.
In IDT Standard mode, EF is a double register-buffered output. In
FWFT mode, OR is a triple register-buffered output.
PROGRAMMABLE ALMOST-FULL FLAG (PAF)
The Programmable Almost-Full flag (PAF) will go LOW when the
FIFO reaches the almost-full condition. In IDT Standard mode, if no
reads are performed after reset (MRS), PAF will go LOW after (D - m)
words are written to the FIFO. The PAF will go LOW after (16,384-m)
writes for the IDT72V261LA and (32,768-m) writes for the IDT72V271LA.
The offset “m” is the full offset value. The default setting for this value is
stated in the footnote of Table 1.
In FWFT mode, the PAF will go LOW after (16,385-m) writes for
the IDT72V261LA and (32,769-m) writes for the IDT72V271LA, where
m is the full offset value. The default setting for this value is stated in
the footnote of Table 2.
See Figure 16, Programmable Almost-Full Flag Timing (IDT Stan-
dard and FWFT Mode), for the relevant timing information.
PAF is synchronous and updated on the rising edge of WCLK.
PROGRAMMABLE ALMOST-EMPTY FLAG (PAE)
The Programmable Almost-Empty flag (PAE) will go LOW when the
FIFO reaches the almost-empty condition. In IDT Standard mode, PAE
will go LOW when there are n words or less in the FIFO. The offset “n”
is the empty offset value. The default setting for this value is stated in
the footnote of Table 1.
In FWFT mode, the PAE will go LOW when there are n+1 words or
less in the FIFO. The default setting for this value is stated in the
footnote of Table 2.
See Figure 17, Programmable Almost-Empty Flag Timing (IDT
Standard and FWFT Mode), for the relevant timing information.
PAE is synchronous and updated on the rising edge of RCLK.
HALF-FULL FLAG (HF)
This output indicates a half-full FIFO. The rising WCLK edge that fills
the FIFO beyond half-full sets HF LOW. The flag remains LOW until the
difference between the write and read pointers becomes less than or
equal to half of the total depth of the device; the rising RCLK edge that
accomplishes this condition sets HF HIGH.
In IDT Standard mode, if no reads are performed after reset (MRS or
PRS), HF will go LOW after (D/2 + 1) writes to the FIFO, where
D = 16,384 for the IDT72V261LA and 32,768 for the IDT72V271LA.
In FWFT mode, if no reads are performed after reset (MRS or PRS),
HF will go LOW after (D-1/2 + 2) writes to the FIFO, where D = 16,385
for the IDT72V261LA and 32,769 for the IDT72V271LA.
See Figure 18, Half-Full Flag Timing (IDT Standard and FWFT Modes),
for the relevant timing information. Because HF is updated by both
RCLK and WCLK, it is considered asynchronous.
DATA OUTPUTS (Q0-Q8)
(Q0 - Q8) are data outputs for 9-bit wide data.
IDT72V261LA/72V271LA
3.3 VOLT CMOS SuperSync FIFO™ 16,384 x 9 and 32,768 x 9
15
COMMERCIAL AND INDUSTRIAL
TEMPERATURE RANGES
Figure 5. Master Reset Timing
MRS
REN
FWFT/SI
4673 drw 08
t
FWFT
WEN
LD
t
RSS
t
RSS
RT
SEN
t
RSS
t
RSF
t
RSF
OE = HIGH
OE = LOW
PAE
PAF, HF
Q
0
- Q
n
t
RSF
EF/OR
FF/IR
t
RSF
t
RSF
If FWFT = HIGH, OR = HIGH
If FWFT = LOW, EF = LOW
If FWFT = LOW, FF = HIGH
If FWFT = HIGH, IR = LOW
t
RS
t
RSS
t
RSS
t
RSR
t
RSR
t
RSR
t
RSR

72V261LA10PFG8

Mfr. #:
Manufacturer:
IDT
Description:
FIFO IDT
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union