COMMERCIAL AND INDUSTRIAL
TEMPERATURE RANGES
IDT72V261LA/72V271LA
3.3 VOLT CMOS SuperSync FIFO™ 16,384 x 9 and 32,768 x 9
16
Figure 6. Partial Reset Timing
t
RS
PRS
t
RSR
REN
t
RSS
4673 drw 09
t
RSR
WEN
t
RSS
RT
SEN
t
RSS
t
RSF
t
RSF
OE = HIGH
OE = LOW
PAE
PAF, HF
Q
0
- Q
n
t
RSF
EF/OR
FF/IR
t
RSF
t
RSF
If FWFT = HIGH, OR = HIGH
If FWFT = LOW, EF = LOW
If FWFT = LOW, FF = HIGH
If FWFT = HIGH, IR = LOW
t
RSS
IDT72V261LA/72V271LA
3.3 VOLT CMOS SuperSync FIFO™ 16,384 x 9 and 32,768 x 9
17
COMMERCIAL AND INDUSTRIAL
TEMPERATURE RANGES
Figure 8. Read Cycle, Empty Flag and First Data Word Latency Timing (IDT Standard Mode)
NOTES:
1. tSKEW3 is the minimum time between a rising WCLK edge and a rising RCLK edge to guarantee that EF will go HIGH (after one RCLK cycle plus tREF). If the time between the rising
edge of WCLK and the rising edge of RCLK is less than tSKEW3, then EF deassertion may be delayed one extra RCLK cycle.
2. LD = HIGH.
3. First word latency: 60ns + tREF + 1*TRCLK.
NOTES:
1. tSKEW1 is the minimum time between a rising RCLK edge and a rising WCLK edge to guarantee that FF will go high (after one WCLK cycle pus tWFF). If the time between the
rising edge of the RCLK and the rising edge of the WCLK is less than tSKEW1, then the FF deassertion may be delayed one extra WCLK cycle.
2. LD = HIGH, OE = LOW, EF = HIGH
Figure 7. Write Cycle and Full Flag Timing (IDT Standard Mode)
D
0
- D
n
WEN
RCLK
FF
REN
tENH
tENH
Q
0
- Q
n
DATA READ NEXT DATA READDATA IN OUTPUT REGISTER
tSKEW1
(1)
4673 drw10
WCLK
NO WRITE
1
2
1
2
tDS
NO WRITE
tWFF
tWFF
tWFF
tA
tENS
tENS
tSKEW1
(1)
tDS
tA
D
X
tDH
tCLKH
D
X
+1
tWFF
tDH
tCLK
tCLKL
RCLK
REN
4673 drw 11
EF
t
CLKH
t
CLKL
t
ENH
t
REF
t
A
t
OLZ
t
OE
Q
0
- Q
n
OE
WCLK
(1)
t
SKEW3
WEN
D
0
- D
n
t
ENS
t
ENS
t
ENH
t
DS
t
DHS
D
0
1
2
t
OLZ
LAST WORD
D
0
D
1
D
1
t
ENS
t
ENH
t
DS
t
DH
t
OHZ
LAST WORD
t
REF
t
ENH
t
ENS
t
A
t
A
t
ENS
t
ENH
t
REF
t
CLK
NO OPERATION
NO OPERATION
COMMERCIAL AND INDUSTRIAL
TEMPERATURE RANGES
IDT72V261LA/72V271LA
3.3 VOLT CMOS SuperSync FIFO™ 16,384 x 9 and 32,768 x 9
18
Figure 9. Write Timing (First Word Fall Through Mode)
NOTES:
1. t
SKEW3 is the minimum time between a rising WCLK edge and a rising RCLK edge to guarantee that OR will go LOW after two RCLK cycles plus tREF. If the time between the rising edge of WCLK and the rising edge of RCLK
is less than t
SKEW3, then OR assertion may be delayed one extra RCLK cycle.
2. t
SKEW2 is the minimum time between a rising WCLK edge and a rising RCLK edge to guarantee that PAE will go HIGH after one RCLK cycle plus tPAE. If the time between the rising edge of WCLK and the rising edge of RCLK
is less than t
SKEW2, then the PAE deassertion may be delayed one extra RCLK cycle.
3. LD = HIGH, OE = LOW
4. n = PAE offset, m = PAF offset and D = maximum FIFO depth.
5. D = 16,385 for the IDT72V261LA and 32,769 for the IDT72V271LA.
6. First word latency: 60ns + t
REF + 2*TRCLK.
W
1
W
2
W
4
W
[n +2]
W
[D-m-1]
W
[D-m-2]
W
[D-1]
W
D
W
[n+3]
W
[n+4]
W
[D-m]
W
[D-m+1]
WCLK
WEN
D
0
- D
8
RCLK
t
DH
t
DS
t
SKEW3
(1)
REN
Q
0
- Q
8
PAF
HF
PAE
IR
t
DS
t
DS
t
DS
t
SKEW2
t
A
t
REF
OR
t
HF
t
PAF
t
WFF
W
[D-m+2]
W
1
t
ENH
4673 drw 12
DATA IN OUTPUT REGISTER
(2)
W
3
1
2
3
1
D-1
2
+1
][
W
D-1
+2
][
W
2
D-1
+3
][
W
2
1
2
t
PAE
t
ENS

72V261LA10PFG8

Mfr. #:
Manufacturer:
IDT
Description:
FIFO IDT
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union