LPC2101_02_03_4 © NXP B.V. 2009. All rights reserved.
Product data sheet Rev. 04 — 2 June 2009 16 of 37
NXP Semiconductors
LPC2101/02/03
Single-chip 16-bit/32-bit microcontrollers
Set HIGH on match.
Toggle on match.
Do nothing on match.
6.14 General purpose 16-bit timers/external event counters
The Timer/Counter is designed to count cycles of the peripheral clock (PCLK) or an
externally supplied clock and optionally generate interrupts or perform other actions at
specified timer values, based on four match registers. It also includes three capture inputs
to trap the timer value when an input signal transitions, optionally generating an interrupt.
Multiple pins can be selected to perform a single capture or match function, providing an
application with ‘or’ and ‘and’, as well as ‘broadcast’ functions among them.
The LPC2101/02/03 can count external events on one of the capture inputs if the
minimum external pulse is equal or longer than a period of the PCLK. In this configuration,
unused capture lines can be selected as regular timer capture inputs or used as external
interrupts.
6.14.1 Features
Two 16-bit timer/counters with a programmable 16-bit prescaler.
External event counter or timer operation.
Three 16-bit capture channels that can take a snapshot of the timer value when an
input signal transitions. A capture event may also optionally generate an interrupt.
Four 16-bit match registers that allow:
Continuous operation with optional interrupt generation on match.
Stop timer on match with optional interrupt generation.
Reset timer on match with optional interrupt generation.
Four external outputs per timer/counter corresponding to match registers, with the
following capabilities:
Set LOW on match.
Set HIGH on match.
Toggle on match.
Do nothing on match.
6.15 Watchdog timer
The purpose of the watchdog is to reset the microcontroller within a reasonable amount of
time if it enters an erroneous state. When enabled, the watchdog will generate a system
reset if the user program fails to ‘feed’ (or reload) the watchdog within a predetermined
amount of time.
6.15.1 Features
Internally resets chip if not periodically reloaded.
Debug mode.
Enabled by software but requires a hardware reset or a watchdog reset/interrupt to be
disabled.
LPC2101_02_03_4 © NXP B.V. 2009. All rights reserved.
Product data sheet Rev. 04 — 2 June 2009 17 of 37
NXP Semiconductors
LPC2101/02/03
Single-chip 16-bit/32-bit microcontrollers
Incorrect/Incomplete feed sequence causes reset/interrupt if enabled.
Flag to indicate watchdog reset.
Programmable 32-bit timer with internal pre-scaler.
Selectable time period from (T
PCLK
× 256 × 4) to (T
PCLK
× 2
32
× 4) in multiples of
T
PCLK
× 4.
6.16 Real-time clock
The Real-Time Clock (RTC) is designed to provide a set of counters to measure time
when normal or idle operating mode is selected. The RTC has been designed to use little
power, making it suitable for battery powered systems where the CPU is not running
continuously (Idle mode).
6.16.1 Features
Measures the passage of time to maintain a calendar and clock.
Ultra-low power design to support battery powered systems.
Provides Seconds, Minutes, Hours, Day of Month, Month, Year, Day of Week, and Day
of Year.
Can use either the RTC dedicated 32 kHz oscillator input or clock derived from the
external crystal/oscillator input at XTAL1. The programmable reference clock divider
allows fine adjustment of the RTC.
Dedicated power supply pin can be connected to a battery or the main 3.3 V.
6.17 System control
6.17.1 Crystal oscillator
The on-chip integrated oscillator operates with external crystal in range of 1 MHz to
25 MHz. The oscillator output frequency is called f
osc
and the ARM processor clock
frequency is referred to as CCLK for purposes of rate equations, etc. f
osc
and CCLK are
the same value unless the PLL is running and connected. Refer to Section 6.17.2 “PLL
and Section 10.1 “XTAL1 input” for additional information.
6.17.2 PLL
The PLL accepts an input clock frequency in the range of 10 MHz to 25 MHz. The input
frequency is multiplied up into the range of 10 MHz to 70 MHz with a Current Controlled
Oscillator (CCO). The multiplier can be an integer value from 1 to 32 (in practice, the
multiplier value cannot be higher than 6 on this family of microcontrollers due to the upper
frequency limit of the CPU). The CCO operates in the range of 156 MHz to 320 MHz, so
there is an additional divider in the loop to keep the CCO within its frequency range while
the PLL is providing the desired output frequency. The output divider may be set to divide
by 2, 4, 8, or 16 to produce the output clock. Since the minimum output divider value is 2,
it is insured that the PLL output has a 50 % duty cycle. The PLL is turned off and
bypassed following a chip reset and may be enabled by software. The program must
configure and activate the PLL, wait for the PLL to lock, and then connect to the PLL as a
clock source. The PLL settling time is 100 µs.
LPC2101_02_03_4 © NXP B.V. 2009. All rights reserved.
Product data sheet Rev. 04 — 2 June 2009 18 of 37
NXP Semiconductors
LPC2101/02/03
Single-chip 16-bit/32-bit microcontrollers
6.17.3 Reset and wake-up timer
Reset has two sources on the LPC2101/02/03: the RST pin and watchdog reset. The RST
pin is a Schmitt trigger input pin with an additional glitch filter. Assertion of chip reset by
any source starts the wake-up timer (see wake-up timer description below), causing the
internal chip reset to remain asserted until the external reset is de-asserted, the oscillator
is running, a fixed number of clocks have passed, and the on-chip flash controller has
completed its initialization.
When the internal reset is removed, the processor begins executing at address 0, which is
the reset vector. At that point, all of the processor and peripheral registers have been
initialized to predetermined reset values.
The wake-up timer ensures that the oscillator and other analog functions required for chip
operation are fully functional before the processor is allowed to execute instructions. This
is important at power on, all types of reset, and whenever any of the aforementioned
functions are turned off for any reason. Since the oscillator and other functions are turned
off during Power-down and Deep power-down mode, any wake-up of the processor from
the Power-down modes makes use of the wake-up timer.
The wake-up timer monitors the crystal oscillator as the means of checking whether it is
safe to begin code execution. When power is applied to the chip, or some event caused
the chip to exit Power-down mode, some time is required for the oscillator to produce a
signal of sufficient amplitude to drive the clock logic. The amount of time depends on
many factors, including the rate of V
DD
ramp (in the case of power on), the type of crystal
and its electrical characteristics (if a quartz crystal is used), as well as any other external
circuitry (e.g., capacitors), and the characteristics of the oscillator itself under the existing
ambient conditions.

LPC2102FHN48,551

Mfr. #:
Manufacturer:
NXP Semiconductors
Description:
Microcontrollers - MCU ARM Microcontrollers - MCU 16K FL/4K RAM 8CH 10-B ADC
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union