7
COMMERCIAL TEMPERATURE RANGE
IDT7290820 5V TIME SLOT INTERCHANGE
DIGITAL SWITCH 2,048 x 2,048
TABLE 1 SWITCHING CONFIGURATION
SWITCHING CONFIGURATIONS
The IDT7290820 can operate at different speeds. To configure the
maximum non-blocking switching data rate, the two DR bits in the IMS register
are used. Following are the possible configurations:
2.048 Mb/s Serial Links (DR0=0, DR1=0)
When the 2.048 Mb/s data rate is selected, the device is configured with
16-input/16-output data streams each having 32, 64 Kbit/s channels each. This
mode requires a CLK of 4.096 MHz and allows a maximum non-blocking
capacity of 512 x 512 channels.
4.096 Mb/s Serial Links (DR0=1, DR1=0)
When the 4.096 Mb/s data rate is selected, the device is configured with
16-input/16-output data streams each having 64, 64 Kbit/s channels each. This
mode requires a CLK of 8.192 MHz and allows a maximum non-blocking
capacity of 1,024 x 1,024 channels.
8.192 Mb/s Serial Links (DR0=0, DR1=1)
When the 8.192 Mb/s data rate is selected, the device is configured with
16-input/16-output data streams each having 128, 64 Kbit/s channels each. This
mode requires a CLK of 16.384 MHz and allows a maximum non-blocking
capacity of 2,048 x 2,048 channels.
Table 1 summarizes the switching configurations and the relationship
between different serial data rates and the master clock frequencies.
INPUT FRAME OFFSET SELECTION
Input frame offset selection allows the channel alignment of individual input
streams to be offset with respect to the output stream channel alignment (i.e. F0i).
Although all input data comes in at the same speed, delays can be caused by
variable path serial backplanes and variable path lengths which may be
implemented in large centralized and distributed switching systems. Because
data is often delayed, this feature is useful in compensating for the skew between
clocks.
Each input stream can have its own delay offset value by programming the
frame input offset registers (FOR). The maximum allowable skew is +4.5 master
clock (CLK) periods forward with resolution of 1/2 clock period. The output frame
offset cannot be offset or adjusted. See Figure 5, Table 11 and 12 for delay offset
programming.
SERIAL INPUT FRAME ALIGNMENT EVALUATION
The IDT7290820 provides the frame evaluation (FE) input to determine
different data input delays with respect to the frame pulse F0i.
A measurement cycle is started by setting the start frame evaluation (SFE)
bit low for at least one frame. When the SFE bit in the IMS register is changed
from low to high, the evaluation starts. Two frames later, the complete frame
evaluation (CFE) bit of the frame alignment register (FAR) changes from low
to high to signal that a valid offset measurement is ready to be read from bits 0
to 11 of the FAR register. The SFE bit must be set to zero before a new
measurement cycle started.
In ST-BUS
®
mode, the falling edge of the frame measurement signal (FE)
is evaluated against the falling edge of the ST-BUS
®
frame pulse. In GCI mode,
the rising edge of FE is evaluated against the rising edge of the GCI frame pulse.
See Table 10 & Figure 4 for the description of the frame alignment register.
This feature is not available when the WFP Frame Alignment mode is
enabled (i.e., when the WFPS pin is connected to VCC).
MEMORY BLOCK PROGRAMMING
The IDT7290820 provides users with the capability of initializing the entire
connection memory block in two frames. To set bits 11 to 15 of every connection
memory location, first program the desired pattern in bits 5 to 9 of the IMS register.
The block programming mode is enabled by setting the memory block
program (MBP) bit of the control register high. When the block programming
enable (BPE) bit of the IMS register is set to high, the block programming data
will be loaded into the bits 11 to 15 of every connection memory location. The
other connection memory bits (bit 0 to bit 10) are loaded with zeros. When the
memory block programming is complete, the device resets the BPE bit to zero.
LOOPBACK CONTROL
The loopback control (LPBK) bit of each connection memory location allows
the TX output data to be looped backed internally to the RX input for diagnostic
purposes.
If the LPBK bit is high, the associated TX output channel data is internally
looped back to the RX input channel (i.e., data from TX n channel m routes to
the RX n channel m internally); if the LPBK bit is low, the loopback feature is
disabled. For proper per-channel loopback operation, the contents of frame
delay offset registers must be set to zero.
DELAY THROUGH THE IDT7290820
The switching of information from the input serial streams to the output serial
streams results in a throughput delay. The device can be programmed to
perform time-slot interchange functions with different throughput delay capabili-
ties on the per-channel basis. For voice applications, variable throughput delay
is best as it ensures minimum delay between input and output data. In wideband
data applications, constant throughput delay is best as the frame integrity of the
information is maintained through the switch.
The delay through the device varies according to the type of throughput
delay selected in the V/C bit of the connection memory.
VARIABLE DELAY MODE (V/C BIT = 0)
In this mode, the delay is dependent only on the combination of source and
destination channels and is independent of input and output streams. The
minimum delay achievable in the IDT7290820 is three time-slots. If the input
channel data is switched to the same output channel (channel n, frame p), it will
be output in the following frame (channel n, frame p+1). The same is true if input
channel n is switched to output channel n+1 or n+2. If the input channel n is
switched to output channel n+3, n+4,..., the new output data will appear in the
same frame. Table 2 shows the possible delays for the IDT7290820 in the
variable delay mode.
Serial Interface Master Clock Required Matrix Channel
Data Rate (MHz) Capacity
2.048 Mb/s 4.096 512 x 512
4.096 Mb/s 8.192 1,024 x 1,024
8.192 Mb/s 16.384 2,048 x 2,048
8
COMMERCIAL TEMPERATURE RANGE
IDT7290820 5V TIME SLOT INTERCHANGE
DIGITAL SWITCH 2,048 x 2,048
CONSTANT DELAY MODE (V/C BIT = 1)
In this mode, frame integrity is maintained in all switching configurations by
making use of a multiple data memory buffer. Input channel data is written into
the data memory buffers during frame n will be read out during frame n+2. In
the IDT7290820, the minimum throughput delay achievable in the constant
delay mode will be one frame. For example, in 2.048 Mb/s mode, when input
time-slot 31 is switched to output time-slot 0. The maximum delay of 94 time-slots
of delay occurs when time-slot 0 in a frame is switched to time-slot 31 in the frame.
See Table 3.
MICROPROCESSOR INTERFACE
The IDT7290820 provides a parallel microprocessor interface for multi-
plexed or non-multiplexed bus structures. This interface is compatible with
Motorola non-multiplexed and multiplexed buses.
If the IM pin is low a Motorola non-multiplexed bus should be connected to
the device. If the IM pin is high, the device monitors the AS/ALE and DS/RD to
determine what mode the IDT7290820 should operate in.
If DS/RD is low at the rising edge of AS/ALE, then the mode 1 multiplexed
timing is selected. If DS/RD is high at the rising edge of AS/ALE, then the mode
2 multiplexed bus timing is selected.
For multiplexed operation, the required signals are the 8-bit data and
address (AD0-AD7), 8-bit Data (D8-D15), Address strobe/Address latch
enable (AS/ ALE), Data strobe/Read (DS/RD), Read/Write /Write (R/W / WR),
Chip select (CS) and Data transfer acknowledge (DTA). See Figure 12 and
Figure 13 for multiplexed parallel microport timing.
For the Motorola non-multiplexed bus, the required signals are the 16-bit
data bus (AD0-AD7, D8-D15), 8-bit address bus (A0-A7) and 4 control lines
(CS, DS, R/W and DTA). See Figure 14 and 15 for Motorola non-multiplexed
microport timing.
The IDT7290820 microport provides access to the internal registers,
connection and data memories. All locations provide read/write access except
for the data memory and the frame alignment register which are read only.
MEMORY MAPPING
The address bus on the microprocessor interface selects the internal
registers and memories of the IDT7290820.
If the A7 address input is low, then A6 through A0 are used to address the
interface mode selection (IMS), control (CR), frame alignment (FAR) and frame
input offset (FOR) registers (Table 4). If the A7 is high, then A6 through A0 are
used to select 32, 64, or 128 locations corresponding to data rate of the
ST-BUS
®
. The address input lines and the stream address bits (STA) of the
control register allow access to the entire data and connection memories. The
control and IMS registers together control all the major functions of the device,
see Figure 3.
As explained in the Serial Data Interface Timing and Switching Configura-
tions sections, after system power-up, the IMS register should be programmed
immediately to establish the desired switching configuration.
The data in the control register consists of the memory block programming
bit (MBP), the memory select bit (MS) and the stream address bits (STA). As
explained in the Memory Block Programming section, the MBP bit allows the
entire connection memory block to be programmed. The memory select bit is
used to designate the connection memory or the data Memory. The stream
address bits select internal memory subsections corresponding to input or output
serial streams.
The data in the IMS register consists of block programming bits (BPD0-
BPD4), block programming enable bit (BPE), output stand by bit (OSB), start
frame evaluation bit (SFE) and data rate selection bits (DR0-1). The block
programming and the block programming enable bits allows users to program
the entire connection memory (see Memory Block Programming section). If the
ODE pin is low, the OSB bit enables (if high) or disables (if low) all ST-BUS
®
output drivers. If the ODE pin is high, the contents of the OSB bit is ignored and
all TX output drivers are enabled.
CONNECTION MEMORY CONTROL
The CCO pin is a 4.096, 8.192 or 16.384 Mb/s output, which carries 512,
1,024 or 2,048 bits, respectively. The contents of the CCO bit of each connection
memory location are output on the CCO pin once every frame. The contents
of the CCO bits of the connection memory are transmitted sequentially on to the
CCO pin and are synchronous with the data rates on the other serial streams.
The CCO bit is output one channel before the corresponding channel on
the serial streams. For example, in 2.048 Mb/s mode (32 channels per frame),
the contents of the CCO bit in position 0 (TX0, CH0) of the connection memory
is output on the first clock cycle of channel 31 through CCO pin. The contents
of the CCO bit in position 32 (TX1, CH0) of the connection memory is output on
the second clock cycle of channel 31 via CCO pin.
If the ODE pin or the OSB bit is high, the OE bit of each connection memory
location controls the output drivers-enables (if high) or disables (if low). See
Table 5 for detail.
The processor channel (PC) bit of the connection memory selects between
Processor Mode and Connection Mode. If high, the contents of the connection
memory are output on the TX streams. If low, the stream address bit (SAB) and
the channel address bit (CAB) of the connection memory defines the source
information (stream and channel) of the time-slot that will be switched to the output
from data memory.
The V/C (Variable/Constant Delay) bit in each connection memory location
allows the per-channel selection between variable and constant throughput
delay modes.
If the LPBK bit is high, the associated TX output channel data is internally
looped back to the RX input channel (i.e., RX n channel m data comes from the
TX n channel m). If the LPBK bit is low, the loopback feature is disabled. For
proper per-channel loopback operation, the contents of the frame delay offset
registers must be set to zero.
INITIALIZATION OF THE IDT7290820
After power up, the state of the connection memory is unknown. As such,
the outputs should be put in high impedance by holding the ODE low. While the
ODE is low, the microprocessor can initialize the device, program the active
paths, and disable unused outputs by programming the OE bit in connection
memory. Once the device is configured, the ODE pin (or OSB bit depending
on initialization) can be switched.
9
COMMERCIAL TEMPERATURE RANGE
IDT7290820 5V TIME SLOT INTERCHANGE
DIGITAL SWITCH 2,048 x 2,048
Connection Memory
Data Memory
1
0
Control Register
CR
b
7
5713 drw06
10000000
The Control Register is only accessed when A7-A0 are all
zeroed. When A7 =1, up to 128 bytes are randomly accessa-
ble via A0-A6 at any one instant. Of which stream these
bytes (channels) are accessed is determined by the state of
CR
b
3 -CR
b
0.
CR
b
6CR
b
5CR
b
4CR
b
2CR
b
1CR
b
0
CR
b
4
000 0
001 1
010 2
011 3
100 4
101 5
110 6
111
7
Stream
CR
b
2CR
b
1CR
b
0
0
0
0
0
0
0
0
0
CR
b
3
CR
b
3
8
9
10
11
12
13
14
15
000
001
010
011
100
101
110
111
1
1
1
1
1
1
1
1
Channel 127
Channel 127
Channel 127
Channel 127
Channel 127
Channel 127
Channel 127
Channel 127
Channel 127
Channel 127
Channel 127
Channel 127
Channel 127
Channel 127
Channel 127
Channel 127
Channel 0 Channel 1 Channel 2
Channel 0 Channel 1 Channel 2
Channel 0 Channel 1 Channel 2
Channel 0 Channel 1 Channel 2
Channel 0 Channel 1 Channel 2
Channel 0 Channel 1 Channel 2
Channel 0 Channel 1 Channel 2
Channel 0 Channel 1 Channel 2
Channel 0 Channel 1 Channel 2
Channel 0 Channel 1 Channel 2
Channel 0 Channel 1 Channel 2
Channel 0 Channel 1 Channel 2
Channel 0 Channel 1 Channel 2
Channel 0 Channel 1 Channel 2
Channel 0 Channel 1 Channel 2
Channel 0 Channel 1 Channel 2
10000001 10000010
11111111
External Address Bits A7-A0
Figure 3. Addressing Internal Memories

7290820JG

Mfr. #:
Manufacturer:
IDT
Description:
Digital Bus Switch ICs 2K X 2K TSI SWITCH
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union