MECHANICAL SPECIFICATIONS
Bottom View
1
2
3
4
5
6
7
8
9
1.900
(48.26)
2.30
(58.4)
0.40
(10.2)
0.18
(4.6)
0.20
(5.1)
0.015 min. clearance
between standoffs and
highest component
0.400
(10.16)
0.700
(17.78)
0.50
(12.70)
1.000
(25.40)
1.400
(35.56)
2.40
(60.96)
Pin Diameters:
Pins 1-4, 6-8 0.040 ± 0.001 (1.016 ±0.025)
Pins 5, 9 0.080 ± 0.001 (2.032 ±0.025)
UCH with Optional Baseplate
0.18
(4.6)
0.50
(12.7)
2.40
(61.0)
2.00
(50.8)
1.90 (48.3)
2.30 (58.4)
0.015 minimum
clearance between
standoffs and
highest component
Do not remove
M3 x 0.50
threaded inserts
from bottom PCB
User’s thermal surface and hardware
Recommended threaded insert torque
is 0.35-0.55 N-M or 3-5 in-lbs.
M3 x 0.50
threaded insert
and standoff (4 places)
Screw length must
not go through Baseplate
Baseplate
Case C61
A
B
A
B
INPUT/OUTPUT CONNECTIONS
Pin Function P17
1 −Input
2 Case
3 On/Off Control
4 +Input
5 +Output
6 +Sense
7 Trim
8 −Sense
9 −Output
Third Angle Projection
Dimensions are in inches (mm) shown for ref. only.
Components are shown for reference only.
Tolerances (unless otherwise specified):
.XX ± 0.02 (0.5)
.XXX ± 0.010 (0.25)
Angles ± 2˚
Pin 2 may be removed under special order.
The case pin 2 is normally only used in
combination with the baseplate. Please
contact Murata Power Solutions.
www.murata-ps.com/support
Standard pin length is shown. Please refer to the Part Number Structure
for special order pin lengths.
Single Output UCH Models
Isolated, “Half-Brick”
1.8−15V Output DC/DC Converters
MDC_UCH Models.C01 Page 13 of 18
Input Fusing
Certain applications and/or safety agencies may require fuses at the inputs of
power conversion components. Fuses should also be used when there is the
possibility of sustained input voltage reversal which is not current-limited. For
greatest safety, we recommend a fast blow fuse installed in the ungrounded
input supply line.
The installer must observe all relevant safety standards and regulations. For
safety agency approvals, install the converter in compliance with the end-user
safety standard, i.e. IEC/EN/UL 60950-1.
Input Reverse-Polarity Protection
If the input voltage polarity is reversed, an internal body diode will become
forward biased and likely draw excessive current from the power source. If this
source is not current-limited or the circuit appropriately fused, it could cause
permanent damage to the converter. Please be sure to install a properly-
rated external input fuse (see Specifi cations).
Input Under-Voltage Shutdown and Start-Up Threshold
Under normal start-up conditions, converters will not begin to regulate properly
until the ramping-up input voltage exceeds and remains at the Start-Up
Threshold Voltage (see Specifi cations). Once operating, converters will not
turn off until the input voltage drops below the Under-Voltage Shutdown Limit.
Subsequent restart will not occur until the input voltage rises again above the
Start-Up Threshold. This built-in hysteresis prevents any unstable on/off opera-
tion at a single input voltage.
Users should be aware however of input sources near the Under-Voltage
Shutdown whose voltage decays as input current is consumed (such as ca-
pacitor inputs), the converter shuts off and then restarts as the external capaci-
tor recharges. Such situations could oscillate. To prevent this, make sure the
operating input voltage is well above the UV Shutdown voltage AT ALL TIMES.
Start-Up Time
Assuming that the output current is set at the rated maximum, the Vin to Vout
Start-Up Time (see Specifi cations) is the time interval between the point when
the ramping input voltage crosses the Start-Up Threshold and the fully loaded
regulated output voltage enters and remains within its specifi ed accuracy band.
Actual measured times will vary with input source impedance, external input
capacitance, input voltage slew rate and fi nal value of the input voltage as it
appears at the converter.
These converters include a soft start circuit to moderate the duty cycle of its
PWM controller at power up, thereby limiting the input inrush current.
The On/Off Remote Control interval from On command to Vout regulated
assumes that the converter already has its input voltage stabilized above the
Start-Up Threshold before the On command. The interval is measured from the
On command until the output enters and remains within its specifi ed accuracy
band. The specifi cation assumes that the output is fully loaded at maximum
rated current. Similar conditions apply to the On to Vout regulated specifi cation
such as external load capacitance and soft start circuitry.
TECHNICAL NOTES
Input Source Impedance
These converters will operate to specifi cations without external components,
assuming that the source voltage has very low impedance and reasonable in-
put voltage regulation. Since real-world voltage sources have fi nite impedance,
performance is improved by adding external fi lter components. Sometimes only
a small ceramic capacitor is suffi cient. Since it is diffi cult to totally characterize
all applications, some experimentation may be needed. Note that external input
capacitors must accept high speed switching currents.
Because of the switching nature of DC/DC converters, the input of these
converters must be driven from a source with both low AC impedance and
adequate DC input regulation. Performance will degrade with increasing input
inductance. Excessive input inductance may inhibit operation. The DC input
regulation specifi es that the input voltage, once operating, must never degrade
below the Shut-Down Threshold under all load conditions. Be sure to use
adequate trace sizes and mount components close to the converter.
I/O Filtering, Input Ripple Current and Output Noise
All models in this converter series are tested and specifi ed for input refl ected
ripple current and output noise using designated external input/output compo-
nents, circuits and layout as shown in the fi gures below. External input capaci-
tors (Cin in the fi gure) serve primarily as energy storage elements, minimizing
line voltage variations caused by transient IR drops in the input conductors.
Users should select input capacitors for bulk capacitance (at appropriate
frequencies), low ESR and high RMS ripple current ratings. In the fi gure below,
the Cbus and Lbus components simulate a typical DC voltage bus. Your specifi c
system confi guration may require additional considerations. Please note that
the values of Cin, Lbus and Cbus will vary according to the specifi c converter
model.
In critical applications, output ripple and noise (also referred to as periodic
and random deviations or PARD) may be reduced by adding fi lter elements
such as multiple external capacitors. Be sure to calculate component tempera-
ture rise from refl ected AC current dissipated inside capacitor ESR.
In the fi gure, the two copper strips simulate real-world printed circuit
impedances between the power supply and its load. In order to minimize circuit
errors and standardize tests between units, scope measurements should be
made using BNC connectors or the probe ground should not exceed one half
inch and soldered directly to the fi xture.
Figure 2. Measuring Input Ripple Current
C
IN
V
IN
C
BUS
L
BUS
C
IN
= 33µF, ESR < 700mΩ @ 100kHz
C
BUS
= 220µF, ESR < 100mΩ @ 100kHz
L
BUS
= 12µH
+VIN
−VIN
CURRENT
PROBE
TO
OSCILLOSCOPE
+
+
www.murata-ps.com/support
Single Output UCH Models
Isolated, “Half-Brick”
1.8−15V Output DC/DC Converters
MDC_UCH Models.C01 Page 14 of 18
Floating Outputs
Since these are isolated DC/DC converters, their outputs are “fl oating” with
respect to their input. The essential feature of such isolation is ideal ZERO
CURRENT FLOW between input and output. Real-world converters however do
exhibit tiny leakage currents between input and output (see Specifi cations).
These leakages consist of both an AC stray capacitance coupling component
and a DC leakage resistance. When using the isolation feature, do not allow
the isolation voltage to exceed specifi cations. Otherwise the converter may
be damaged. Designers will normally use the negative output (-Output) as
the ground return of the load circuit. You can however use the positive output
(+Output) as the ground return to effectively reverse the output polarity.
Minimum Output Loading Requirements
All models regulate within specifi cation and are stable under no load to full
load conditions. Operation under no load might however slightly increase
output ripple and noise.
Thermal Shutdown
To prevent many over temperature problems and damage, these converters
include thermal shutdown circuitry. If environmental conditions cause the
temperature of the DC/DC’s to rise above the Operating Temperature Range
up to the shutdown temperature, an on-board electronic temperature sensor
will power down the unit. When the temperature decreases below the turn-on
threshold, the converter will automatically restart. There is a small amount of
hysteresis to prevent rapid on/off cycling. The temperature sensor is typically
located adjacent to the switching controller, approximately in the center of the
unit. See the Performance and Functional Specifi cations.
CAUTION: If you operate too close to the thermal limits, the converter may
shut down suddenly without warning. Be sure to thoroughly test your applica-
tion to avoid unplanned thermal shutdown.
Temperature Derating Curves
The graphs in this data sheet illustrate typical operation under a variety of
conditions. The Derating curves show the maximum continuous ambient air
temperature and decreasing maximum output current which is acceptable
under increasing forced airfl ow measured in Linear Feet per Minute (“LFM”).
Note that these are AVERAGE measurements. The converter will accept brief
increases in current or reduced airfl ow as long as the average is not exceeded.
Note that the temperatures are of the ambient airfl ow, not the converter
itself which is obviously running at higher temperature than the outside air.
Also note that very low fl ow rates (below about 25 LFM) are similar to “natural
convection, that is, not using fan-forced airfl ow.
Murata Power Solutions makes Characterization measurements in a closed
cycle wind tunnel with calibrated airfl ow. We use both thermocouples and an
infrared camera system to observe thermal performance. As a practical matter,
it is quite diffi cult to insert an anemometer to precisely measure airfl ow in
most applications. Sometimes it is possible to estimate the effective airfl ow if
you thoroughly understand the enclosure geometry, entry/exit orifi ce areas and
the fan fl owrate specifi cations.
CAUTION: If you routinely or accidentally exceed these Derating guidelines,
the converter may have an unplanned Over Temperature shut down. Also, these
graphs are all collected at slightly above Sea Level altitude. Be sure to reduce
the derating for higher density altitude.
Output Overvoltage Protection
This converter monitors its output voltage for an over-voltage condition. If
the output exceeds OVP limits, the sensing circuit will power down the unit,
and the output voltage will decrease. After a time-out period, the PWM will
automatically attempt to restart, causing the output voltage to ramp up to its
rated value. It is not necessary to power down and reset the converter for the
automatic OVP-recovery restart.
If the fault condition persists and the output voltage climbs to excessive
levels, the OVP circuitry will initiate another shutdown cycle. This on/off cycling
is referred to as “hiccup” mode. It safely tests full current rated output voltage
without damaging the converter.
Output Fusing
The converter is extensively protected against current, voltage and temperature
extremes. However your output application circuit may need additional protec-
tion. In the extremely unlikely event of output circuit failure, excessive voltage
could be applied to your circuit. Consider using an appropriate fuse in series
with the output.
Output Current Limiting
As soon as the output current increases to approximately 125% to 150% of
its maximum rated value, the DC/DC converter will enter a current-limiting
mode. The output voltage will decrease proportionally with increases in output
current, thereby maintaining a somewhat constant power output. This is also
commonly referred to as power limiting.
Current limiting inception is defi ned as the point at which full power falls
below the rated tolerance. See the Performance/Functional Specifi cations.
Note particularly that the output current may briefl y rise above its rated value
in normal operation as long as the average output power is not exceeded. This
enhances reliability and continued operation of your application. If the output
current is too high, the converter will enter the short circuit condition.
Output Short Circuit Condition
When a converter is in current-limit mode, the output voltage will drop as the
output current demand increases. If the output voltage drops too low (ap-
proximately 98% of nominal output voltage for most models), the magnetically
Figure 3. Measuring Output Ripple and Noise (PARD)
C1
C1 = 1µF
C2 = 10µF
LOAD 2-3 INCHES (51-76mm) FROM MODULE
C2
R
LOAD
SCOPE
+VOUT
+SENSE
−SENSE
−VOUT
www.murata-ps.com/support
Single Output UCH Models
Isolated, “Half-Brick”
1.8−15V Output DC/DC Converters
MDC_UCH Models.C01 Page 15 of 18

UCH-3.3/35-D24PB-C

Mfr. #:
Manufacturer:
Description:
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union