LPC2109_2119_2129 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.
Product data sheet Rev. 7 — 14 June 2011 19 of 46
NXP Semiconductors
LPC2109/2119/2129
Single-chip 16/32-bit microcontrollers
Enabled by software but requires a hardware reset or a watchdog reset/interrupt to be
disabled.
Incorrect/incomplete feed sequence causes reset/interrupt if enabled.
Flag to indicate watchdog reset.
Programmable 32-bit timer with internal pre-scaler.
Selectable time period from (T
cy(PCLK)
256 4) to (T
cy(PCLK)
2
32
4) in multiples of
T
cy(PCLK)
4.
6.16 Real-time clock
The RTC is designed to provide a set of counters to measure time when normal or idle
operating mode is selected. The RTC has been designed to use little power, making it
suitable for battery powered systems where the CPU is not running continuously (Idle
mode).
6.16.1 Features
Measures the passage of time to maintain a calendar and clock.
Ultra low power design to support battery powered systems.
Provides Seconds, Minutes, Hours, Day of Month, Month, Year, Day of Week, and
Day of Year.
Programmable reference clock divider allows adjustment of the RTC to match various
crystal frequencies.
6.17 Pulse width modulator
The PWM is based on the standard Timer block and inherits all of its features, although
only the PWM function is pinned out on the LPC2109/2119/2129. The Timer is designed to
count cycles of the peripheral clock (PCLK) and optionally generate interrupts or perform
other actions when specified timer values occur, based on seven match registers. The
PWM function is also based on match register events.
The ability to separately control rising and falling edge locations allows the PWM to be
used for more applications. For instance, multi-phase motor control typically requires
three non-overlapping PWM outputs with individual control of all three pulse widths and
positions.
Two match registers can be used to provide a single edge controlled PWM output. One
match register (MR0) controls the PWM cycle rate, by resetting the count upon match.
The other match register controls the PWM edge position. Additional single edge
controlled PWM outputs require only one match register each, since the repetition rate is
the same for all PWM outputs. Multiple single edge controlled PWM outputs will all have a
rising edge at the beginning of each PWM cycle, when an MR0 match occurs.
LPC2109_2119_2129 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.
Product data sheet Rev. 7 — 14 June 2011 20 of 46
NXP Semiconductors
LPC2109/2119/2129
Single-chip 16/32-bit microcontrollers
Three match registers can be used to provide a PWM output with both edges controlled.
Again, the MR0 match register controls the PWM cycle rate. The other match registers
control the two PWM edge positions. Additional double edge controlled PWM outputs
require only two match registers each, since the repetition rate is the same for all PWM
outputs.
With double edge controlled PWM outputs, specific match registers control the rising and
falling edge of the output. This allows both positive going PWM pulses (when the rising
edge occurs prior to the falling edge), and negative going PWM pulses (when the falling
edge occurs prior to the rising edge).
6.17.1 Features
Seven match registers allow up to six single edge controlled or three double edge
controlled PWM outputs, or a mix of both types.
The match registers also allow:
Continuous operation with optional interrupt generation on match.
Stop timer on match with optional interrupt generation.
Reset timer on match with optional interrupt generation.
Supports single edge controlled and/or double edge controlled PWM outputs. Single
edge controlled PWM outputs all go HIGH at the beginning of each cycle unless the
output is a constant LOW. Double edge controlled PWM outputs can have either edge
occur at any position within a cycle. This allows for both positive going and negative
going pulses.
Pulse period and width can be any number of timer counts. This allows complete
flexibility in the trade-off between resolution and repetition rate. All PWM outputs will
occur at the same repetition rate.
Double edge controlled PWM outputs can be programmed to be either positive going
or negative going pulses.
Match register updates are synchronized with pulse outputs to prevent generation of
erroneous pulses. Software must ‘release’ new match values before they can become
effective.
May be used as a standard timer if the PWM mode is not enabled.
A 32-bit Timer/Counter with a programmable 32-bit Prescaler.
6.18 System control
6.18.1 Crystal oscillator
The oscillator supports crystals in the range of 1 MHz to 30 MHz. The oscillator output
frequency is called f
osc
and the ARM processor clock frequency is referred to as CCLK for
purposes of rate equations, etc.. f
osc
and CCLK are the same value unless the PLL is
running and connected. Refer to Section 6.18.2 “
PLL for additional information.
LPC2109_2119_2129 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.
Product data sheet Rev. 7 — 14 June 2011 21 of 46
NXP Semiconductors
LPC2109/2119/2129
Single-chip 16/32-bit microcontrollers
6.18.2 PLL
The PLL accepts an input clock frequency in the range of 10 MHz to 25 MHz. The input
frequency is multiplied up into the range of 10 MHz to 60 MHz with a Current Controlled
Oscillator (CCO). The multiplier can be an integer value from 1 to 32 (in practice, the
multiplier value cannot be higher than 6 on this family of microcontrollers due to the upper
frequency limit of the CPU). The CCO operates in the range of 156 MHz to 320 MHz, so
there is an additional divider in the loop to keep the CCO within its frequency range while
the PLL is providing the desired output frequency. The output divider may be set to divide
by 2, 4, 8, or 16 to produce the output clock. Since the minimum output divider value is 2,
it is insured that the PLL output has a 50 % duty cycle. The PLL is turned off and
bypassed following a chip Reset and may be enabled by software. The program must
configure and activate the PLL, wait for the PLL to Lock, then connect to the PLL as a
clock source. The PLL settling time is 100 s.
6.18.3 Reset and wake-up timer
Reset has two sources on the LPC2109/2119/2129: the RESET pin and Watchdog Reset.
The RESET
pin is a Schmitt trigger input pin with an additional glitch filter. Assertion of
chip Reset by any source starts the Wake-up Timer (see Wake-up Timer description
below), causing the internal chip reset to remain asserted until the external Reset is
de-asserted, the oscillator is running, a fixed number of clocks have passed, and the
on-chip flash controller has completed its initialization.
When the internal Reset is removed, the processor begins executing at address 0, which
is the Reset vector. At that point, all of the processor and peripheral registers have been
initialized to predetermined values.
The wake-up timer ensures that the oscillator and other analog functions required for chip
operation are fully functional before the processor is allowed to execute instructions. This
is important at power on, all types of Reset, and whenever any of the aforementioned
functions are turned off for any reason. Since the oscillator and other functions are turned
off during Power-down mode, any wake-up of the processor from Power-down mode
makes use of the Wake-up Timer.
The Wake-up Timer monitors the crystal oscillator as the means of checking whether it is
safe to begin code execution. When power is applied to the chip, or some event caused
the chip to exit Power-down mode, some time is required for the oscillator to produce a
signal of sufficient amplitude to drive the clock logic. The amount of time depends on
many factors, including the rate of V
DD
ramp (in the case of power on), the type of crystal
and its electrical characteristics (if a quartz crystal is used), as well as any other external
circuitry (e.g. capacitors), and the characteristics of the oscillator itself under the existing
ambient conditions.
6.18.4 Code security (Code Read Protection - CRP)
This feature of the LPC2109/2119/2129 allows the user to enable different levels of
security in the system so that access to the on-chip flash and use of the JTAG and ISP
can be restricted. When needed, CRP is invoked by programming a specific pattern into a
dedicated flash location. IAP commands are not affected by the CRP.
There are three levels of the Code Read Protection.

LPC2129FBD64/01,15

Mfr. #:
Manufacturer:
NXP Semiconductors
Description:
ARM Microcontrollers - MCU ARM7 256KF/16KR/CAN
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union