Extremely Accurate I
2
C-Integrated
RTC/TCXO/Crystal
16 Maxim Integrated
DS3231
slave by not generating an acknowledge bit on the
last byte that has been clocked out of the slave. In
this case, the slave must leave the data line high to
enable the master to generate the STOP condition.
Figures 3 and 4 detail how data transfer is accom-
plished on the I
2
C bus. Depending upon the state of
the R/W bit, two types of data transfer are possible:
Data transfer from a master transmitter to a slave
receiver. The first byte transmitted by the master is
the slave address. Next follows a number of data
bytes. The slave returns an acknowledge bit after
each received byte. Data is transferred with the most
significant bit (MSB) first.
Data transfer from a slave transmitter to a master
receiver. The first byte (the slave address) is trans-
mitted by the master. The slave then returns an
acknowledge bit. Next follows a number of data
bytes transmitted by the slave to the master. The
ACK
ACK
ACKNOWLEDGEMENT
SIGNAL FROM RECEIVER
ACKNOWLEDGEMENT
SIGNAL FROM RECEIVER
SLAVE ADDRESS
MSB
SCL
SDA
R/W
DIRECTION
BIT
12 678 9 12 893–7
Figure 2. I
2
C Data Transfer Overview
...
AXXXXXXXXA1101000S 0 XXXXXXXX A XXXXXXXX A XXXXXXXX A P
<R/W> <WORD ADDRESS (n)> <DATA (n)> <DATA (n + 1)> <DATA (n + X)
S - START
A - ACKNOWLEDGE (ACK)
P - STOP
R/W - READ/WRITE OR DIRECTION BIT ADDRESS
DATA TRANSFERRED
(X + 1 BYTES + ACKNOWLEDGE)
MASTER TO SLAVESLAVE TO MASTER
<SLAVE
ADDRESS>
Figure 3. Data Write—Slave Receiver Mode
...
AXXXXXXXXA1101000S 1 XXXXXXXX A XXXXXXXX A XXXXXXXX A P
S - START
A - ACKNOWLEDGE (ACK)
P - STOP
A - NOT ACKNOWLEDGE (NACK)
R/W - READ/WRITE OR DIRECTION BIT ADDRESS
DATA TRANSFERRED
(X + 1 BYTES + ACKNOWLEDGE)
NOTE: LAST DATA BYTE IS FOLLOWED BY A NACK.
MASTER TO SLAVE SLAVE TO MASTER
<R/W> <DATA (n)> <DATA (n + 1)> <DATA (n + 2)> <DATA (n + X)>
<SLAVE
ADDRESS>
Figure 4. Data Read—Slave Transmitter Mode
Extremely Accurate I
2
C-Integrated
RTC/TCXO/Crystal
Maxim Integrated 17
DS3231
master returns an acknowledge bit after all received
bytes other than the last byte. At the end of the last
received byte, a not acknowledge is returned.
The master device generates all the serial clock puls-
es and the START and STOP conditions. A transfer is
ended with a STOP condition or with a repeated
START condition. Since a repeated START condition
is also the beginning of the next serial transfer, the
bus will not be released. Data is transferred with the
most significant bit (MSB) first.
The DS3231 can operate in the following two modes:
Slave receiver mode (DS3231 write mode): Serial
data and clock are received through SDA and SCL.
After each byte is received, an acknowledge bit is
transmitted. START and STOP conditions are recog-
nized as the beginning and end of a serial transfer.
Address recognition is performed by hardware after
reception of the slave address and direction bit. The
slave address byte is the first byte received after the
master generates the START condition. The slave
address byte contains the 7-bit DS3231 address,
which is 1101000, followed by the direction bit (R/W),
which is 0 for a write. After receiving and decoding
the slave address byte, the DS3231 outputs an
acknowledge on SDA. After the DS3231 acknowl-
edges the slave address + write bit, the master
transmits a word address to the DS3231. This sets
the register pointer on the DS3231, with the DS3231
acknowledging the transfer. The master may then
transmit zero or more bytes of data, with the DS3231
acknowledging each byte received. The register
pointer increments after each data byte is trans-
ferred. The master generates a STOP condition to
terminate the data write.
Slave transmitter mode (DS3231 read mode): The
first byte is received and handled as in the slave
receiver mode. However, in this mode, the direction
bit indicates that the transfer direction is reversed.
Serial data is transmitted on SDA by the DS3231
while the serial clock is input on SCL. START and
STOP conditions are recognized as the beginning
and end of a serial transfer. Address recognition is
performed by hardware after reception of the slave
address and direction bit. The slave address byte is
the first byte received after the master generates a
START condition. The slave address byte contains
the 7-bit DS3231 address, which is 1101000, fol-
lowed by the direction bit (R/W), which is 1 for a
read. After receiving and decoding the slave
address byte, the DS3231 outputs an acknowledge
on SDA. The DS3231 then begins to transmit data
starting with the register address pointed to by the
register pointer. If the register pointer is not written to
before the initiation of a read mode, the first address
that is read is the last one stored in the register point-
er. The DS3231 must receive a not acknowledge to
end a read.
S - START
Sr - REPEATED START
A - ACKNOWLEDGE (ACK)
P - STOP
A - NOT ACKNOWLEDGE (NACK)
R/W - READ/WRITE OR DIRECTION BIT ADDRESS
<R/W> <WORD ADDRESS (n)> <SLAVE ADDRESS (n)>
<SLAVE
ADDRESS> <R/W>
AXXXXXXXXA1101000 1101000SSr0 A1
DATA TRANSFERRED
(X + 1 BYTES + ACKNOWLEDGE)
NOTE: LAST DATA BYTE IS FOLLOWED BY A NACK.
MASTER TO SLAVE SLAVE TO MASTER
AXXXXXXXX XXXXXXXX A XXXXXXXX A XXXXXXXX A P
<DATA (n)> <DATA (n + 1)> <DATA (n + 2)> <DATA (n + X)>
...
Figure 5. Data Write/Read (Write Pointer, Then Read)—Slave Receive and Transmit
Extremely Accurate I
2
C-Integrated
RTC/TCXO/Crystal
18 Maxim Integrated
DS3231
Chip Information
SUBSTRATE CONNECTED TO GROUND
PROCESS: CMOS
Package Information
For the latest package outline information and land patterns (foot-
prints), go to www.maximintegrated.com/packages
. Note that a
“+”, “#”, or “-” in the package code indicates RoHS status only.
Package drawings may show a different suffix character, but the
drawing pertains to the package regardless of RoHS status.
16
15
14
13
12
11
10
9
1
2
3
4
5
6
7
8
32kHz
SCL
SDA
V
BAT
GND
N.C.
N.C.
N.C.
N.C.
TOP VIEW
SO
V
CC
INT/SQW
N.C.
RST
N.C.
N.C.
N.C.
DS3231
Pin Configuration
Handling, PC Board Layout,
and Assembly
The DS3231 package contains a quartz tuning-fork
crystal. Pick-and-place equipment can be used, but
precautions should be taken to ensure that excessive
shocks are avoided. Ultrasonic cleaning should be
avoided to prevent damage to the crystal.
Avoid running signal traces under the package, unless
a ground plane is placed between the package and the
signal line. All N.C. (no connect) pins must be connect-
ed to ground.
Moisture-sensitive packages are shipped from the fac-
tory dry packed. Handling instructions listed on the
package label must be followed to prevent damage
during reflow. Refer to the IPC/JEDEC J-STD-020 stan-
dard for moisture-sensitive device (MSD) classifications
and reflow profiles. Exposure to reflow is limited to 2
times maximum.
PACKAGE
TYPE
PACKAGE
CODE
OUTLINE
NO.
LAND
PATTERN NO.
16 SO W16#H2
21-0042 90-0107

DS3231SN#

Mfr. #:
Manufacturer:
Maxim Integrated
Description:
Real Time Clock Integrated RTC/TCXO/Crystal
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union

Products related to this Datasheet