AD7893
–3–
REV. E
TIMING CHARACTERISTICS
1, 2
A, B S
Parameter Versions Version Units Test Conditions/Comments
t
1
50 50 ns min CONVST Pulse Width
t
2
60 70 ns min SCLK High Pulse Width
t
3
30 40 ns min SCLK Low Pulse Width
t
4
3
50 60 ns max SCLK Rising Edge to Data Valid Delay
t
5
4
10 10 ns min Bus Relinquish Time after Falling Edge of SCLK
100 100 ns max
NOTES
1
Sample tested at +25°C to ensure compliance. All input signals are measured with tr = tf = 1 ns (10% to 90% of +5 V) and timed from a voltage level of +1.6 V.
2
See Figure 5.
3
Measured with the load circuit of Figure 1 and defined as the time required for an output to cross 0.8 V or 2.4 V.
4
Derived from the measured time taken by the data outputs to change 0.5 V when loaded with the circuit of Figure 1. The measured number is then extrapolated back
to remove the effects of charging or discharging the 50 pF capacitor. This means that the time, t
5
, quoted in the timing characteristics is the true bus relinquish time
of the part and, as such, is independent of external bus loading capacitances.
(V
DD
= +5 V, AGND = DGND = 0 V, REF IN = +2.5 V)
ABSOLUTE MAXIMUM RATINGS*
(T
A
= +25°C unless otherwise noted)
V
DD
to AGND . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to +7 V
V
DD
to DGND . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to +7 V
Analog Input Voltage to AGND
AD7893-10, AD7893-5 . . . . . . . . . . . . . . . . . . . . . . . ±17 V
AD7893-2, AD7893-3 . . . . . . . . . . . . . . . . . . . –5 V, +10 V
Reference Input Voltage to AGND . . . –0.3 V to V
DD
+ 0.3 V
Digital Input Voltage to DGND . . . . . –0.3 V to V
DD
+ 0.3 V
Digital Output Voltage to DGND . . . . –0.3 V to V
DD
+ 0.3 V
Operating Temperature Range
Commercial (A, B Versions) . . . . . . . . . . . –40°C to +85°C
Extended (S Version) . . . . . . . . . . . . . . . . –55°C to +125°C
Storage Temperature Range . . . . . . . . . . . . –65°C to +150°C
Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . +150°C
Plastic DIP Package, Power Dissipation . . . . . . . . . . 450 mW
θ
JA
Thermal Impedance . . . . . . . . . . . . . . . . . . . . . 130°C/W
Lead Temperature (Soldering, 10 sec) . . . . . . . . . . . +260°C
Cerdip Package, Power Dissipation . . . . . . . . . . . . . . 450 mW
θ
JA
Thermal Impedance . . . . . . . . . . . . . . . . . . . . . 125°C/W
Lead Temperature (Soldering, 10 sec) . . . . . . . . . . . +300°C
SOIC Package, Power Dissipation . . . . . . . . . . . . . . . 450 mW
θ
JA
Thermal Impedance . . . . . . . . . . . . . . . . . . . . . 170°C/W
Lead Temperature, Soldering
Vapor Phase (60 sec) . . . . . . . . . . . . . . . . . . . . . . +215°C
Infrared (15 sec) . . . . . . . . . . . . . . . . . . . . . . . . . . +220°C
*Stresses above those listed under “Absolute Maximum Ratings” may cause
permanent damage to the device. This is a stress rating only; functional operation
of the device at these or any other conditions above those listed in the operational
sections of this specification is not implied. Exposure to absolute maximum rating
conditions for extended periods may affect device reliability.
TO
OUTPUT
PIN
+2.1V
1.6mA
200µA
50pF
Figure 1. Load Circuit for Access Time and Bus
Relinquish Time
WARNING!
ESD SENSITIVE DEVICE
CAUTION
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily
accumulate on the human body and test equipment and can discharge without detection. Although
the AD7893 features proprietary ESD protection circuitry, permanent damage may occur on devices
subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are
recommended to avoid performance degradation or loss of functionality.
AD7893
REV. E
–4–
PIN FUNCTION DESCRIPTION
Pin Pin
No. Mnemonic Description
1 REF IN Voltage Reference Input. An external reference source should be connected to this pin to provide the refer-
ence voltage for the AD7893’s conversion process. The REF IN input is buffered on-chip. The nominal ref-
erence voltage for correct operation of the AD7893 is +2.5 V.
2V
IN
Analog Input Channel. The analog input range is ±10 V (AD7893-10), ±2.5 V (AD7893-3), 0 V to +5 V
(AD7893-5) and 0 V to +2.5 V (AD7893-2).
3 AGND Analog Ground. Ground reference for track/hold, comparator and DAC.
4 SCLK Serial Clock Input. An external serial clock is applied to this input to obtain serial data from the AD7893. A
new serial data bit is clocked out on the rising edge of this serial clock, and data is valid on the falling edge.
The serial clock input should be taken low at the end of the serial data transmission.
5 SDATA Serial Data Output. Serial data from the AD7893 is provided at this output. The serial data is clocked out by
the rising edge of SCLK and is valid on the falling edge of SCLK. Sixteen bits of serial data are provided
with four leading zeros followed by the 12 bits of conversion data. On the sixteenth falling edge of SCLK, the
SDATA line is disabled (three-stated). Output data coding is twos complement for the AD7893-10 and
AD7893-3, straight binary for the AD7893-2 and AD7893-5.
6 DGND Digital Ground. Ground reference for digital circuitry.
7
CONVST Convert Start. Edge-triggered logic input. On the falling edge of this input, the serial clock counter is reset to
zero. On the rising edge of this input, the track/hold goes into its hold mode and conversion is initiated.
8V
DD
Positive supply voltage, +5 V ± 5%.
PIN CONFIGURATION
DIP and SOIC
1
2
3
4
8
7
6
5
REF IN
V
IN
AGND
SCLK
DGND
SDATA
V
DD
CONVST
AD7893
TOP VIEW
(NOT TO SCALE)
ORDERING GUIDE
Temperature Linearity Package
Model Range Error SNR Options*
AD7893AN-2 –40°C to +85°C ±1 LSB 70 dB N-8
AD7893BN-2 –40°C to +85°C ±1/2 LSB 72 dB N-8
AD7893AR-2 –40°C to +85°C ±1 LSB 70 dB SO-8
AD7893BR-2 –40°C to +85°C ±1/2 LSB 72 dB SO-8
AD7893SQ-2 –55°C to +125°C ±1 LSB 70 dB Q-8
AD7893AN-5 –40°C to +85°C ±1 LSB 70 dB N-8
AD7893BN-5 –40°C to +85°C ±1/2 LSB 72 dB N-8
AD7893AR-5 –40°C to +85°C ±1 LSB 70 dB SO-8
AD7893BR-5 –40°C to +85°C ±1/2 LSB 72 dB SO-8
AD7893SQ-5 –55°C to +125°C ±1 LSB 70 dB Q-8
AD7893AN-10 –40°C to +85°C ±1 LSB 70 dB N-8
AD7893BN-10 –40°C to +85°C ±1/2 LSB 72 dB N-8
AD7893AR-10 –40°C to +85°C ±1 LSB 70 dB SO-8
AD7893BR-10 –40°C to +85°C ±1/2 LSB 72 dB SO-8
AD7893SQ-10 –55°C to +125°C ±1 LSB 70 dB Q-8
AD7893AR-3 –40°C to +85°C ±1 LSB 70 dB SO-8
*N = Plastic DIP, Q = Cerdip, SO = SOIC.
AD7893
–5–
REV. E
Relative Accuracy
Relative accuracy or endpoint nonlinearity is the maximum
deviation from a straight line passing through the endpoints of
the ADC transfer function.
Differential Nonlinearity
This is the difference between the measured and the ideal 1 LSB
change between any two adjacent codes in the ADC.
Positive Full-Scale Error (AD7893-10)
This is the deviation of the last code transition (01 . . . 110 to
01 . . . 111) from the ideal 4 × REF IN – 1 LSB (AD7893-10
±10 V range) after the Bipolar Zero Error has been adjusted out.
Positive Full-Scale Error (AD7893-3)
This is the deviation of the last code transition (01 . . . 110 to
01 . . . 111) from the ideal (REF IN – 1 LSB) after the
Bipolar Zero Error has been adjusted out.
Positive Full-Scale Error (AD7893-5)
This is the deviation of the last code transition (11 . . . 110 to
11 . . . 111) from the ideal (2 × REF IN – 1 LSB) after the Uni-
polar Offset Error has been adjusted out.
Positive Full-Scale Error (AD7893-2)
This is the deviation of the last code transition (11 . . . 110 to
11 . . . 111) from the ideal (REF IN – 1 LSB) after the Unipolar
Offset Error has been adjusted out.
Bipolar Zero Error (AD7893-10, 610 V; AD7893-3, 62.5 V)
This is the deviation of the midscale transition (all 0s to all 1s)
from the ideal 0 V (AGND).
Unipolar Offset Error (AD7893-2, AD7893-5)
This is the deviation of the first code transition (00 . . . 000 to
00 . . . 001) from the ideal 1 LSB.
Negative Full-Scale Error (AD7893-10)
This is the deviation of the first code transition (10 . . . 000 to
10 . . . 001) from the ideal –4 × REF IN + 1 LSB (AD7893-10
±10 V range) after Bipolar Zero Error has been adjusted out.
Negative Full-Scale Error (AD7893-3)
This is the deviation of the first code transition (10 . . . 000 to
10 . . . 001) from the ideal (–REF IN + 1 LSB) after Bipolar
Zero Error has been adjusted out.
Track/Hold Acquisition Time
Track/Hold acquisition time is the time required for the output
of the track/hold amplifier to reach its final value, within
±1/2 LSB, after the end of conversion (the point at which the
track/hold returns to track mode). It also applies to situations
where there is a step input change on the input voltage applied
to the V
IN
input of the AD7893. This means that the user must
wait for the duration of the track/hold acquisition time after the
end of conversion or after a step input change to V
IN
before
starting another conversion, to ensure that the part operates to
specification.
TERMINOLOGY
Signal to (Noise + Distortion) Ratio
This is the measured ratio of signal to (noise + distortion) at the
output of the A/D converter. The signal is the rms amplitude of
the fundamental. Noise is the rms sum of all nonfundamental
signals up to half the sampling frequency (f
S
/2), excluding dc.
The ratio is dependent upon the number of quantization levels
in the digitization process; the more levels, the smaller the quan-
tization noise. The theoretical signal to (noise + distortion) ratio
for an ideal N-bit converter with a sine wave input is given by:
Signal to (Noise + Distortion) = (6.02 N + 1.76) dB
Thus for a 12-bit converter, this is 74 dB.
Total Harmonic Distortion
Total harmonic distortion (THD) is the ratio of the rms sum of
harmonics to the fundamental. For the AD7893, it is defined as:
where V
1
is the rms amplitude of the fundamental and V
2
, V
3
,
V
4
, V
5
and V
6
are the rms amplitudes of the second through the
sixth harmonics.
Peak Harmonic or Spurious Noise
Peak harmonic or spurious noise is defined as the ratio of the
rms value of the next largest component in the ADC output
spectrum (up to f
S
/2 and excluding dc) to the rms value of the
fundamental. Normally, the value of this specification is deter-
mined by the largest harmonic in the spectrum, but for parts
where the harmonics are buried in the noise floor, it will be a
noise peak.
Intermodulation Distortion
With inputs consisting of sine waves at two frequencies, fa and
fb, any active device with nonlinearities will create distortion
products at sum and difference frequencies of mfa ± nfb where
m, n = 0, 1, 2, 3, etc. Intermodulation terms are those for
which neither m nor n are equal to zero. For example, the second
order terms include (fa + fb) and (fa – fb), while the third order
terms include (2 fa + fb), (2 fa – fb), (fa + 2 fb) and (fa – 2 fb).
The AD7893 is tested using the CCIF standard where two
input frequencies near the top end of the input bandwidth are
used. In this case, the second and third order terms are of differ-
ent significance. The second order terms are usually distanced
in frequency from the original sine waves, while the third order
terms are usually at a frequency close to the input frequencies.
As a result, the second and third order terms are specified sepa-
rately. The calculation of the intermodulation distortion is per
the THD specification where it is the ratio of the rms sum of the
individual distortion products to the rms amplitude of the fun-
damental expressed in dBs.
THD(dB) = 20 log
V
2
2
+V
3
2
+V
4
2
+V
5
2
+V
6
2
V
1

AD7893ARZ-5

Mfr. #:
Manufacturer:
Analog Devices Inc.
Description:
Analog to Digital Converters - ADC Bipolar Input SGL Spply 12B Serial 6uS
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union