DS12R885/DS12CR887/DS12R887
RTCs with Constant-Voltage Trickle Charger
10 ____________________________________________________________________
Pin Description (continued)
PIN
SO EDIP
BGA
NAME FUNCTION
12, 16 12
D5–D8,
E1–E8,
F5F8
GND Ground
13 13 C1 CS
Chip-Select Input. The active-low chip-select signal must be asserted low for a bus cycle
in the DS12R885 to be accessed. CS must be kept in the active state during DS and AS
for Motorola timing and during DS and R/W for Intel timing. Bus cycles that take place
without asserting CS latch addresses, but no access occurs. When V
CC
is below V
PF
volts,
the DS12R885 inhibits access by internally disabling the CS input. This action protects the
RTC data and the RAM data during power outages.
14 14 C3 AS
Address Strobe Input. A positive-going address-strobe pulse serves to demultiplex the
bus. The falling edge of AS causes the address to be latched within the DS12R885. The
next rising edge that occurs on the AS bus clears the address regardless of whether CS is
asserted. An address strobe must immediately precede each write or read access. If a
write or read is performed with CS deasserted, another address strobe must be performed
prior to a read or write access with CS asserted.
15 15 C2 R/W
Read/Write Input. The R/W pin has two modes of operation. When the MOT pin is
connected to V
CC
for Motorola timing, R/W is at a level that indicates whether the current
cycle is a read or write. A read cycle is indicated with a high level on R/W while DS is high.
A write cycle is indicated when R/W is low during DS. When the MOT pin is connected to
GND for Intel timing, the R/W signal is an active-low signal. In this mode, the R/W pin
operates in a similar fashion as the write-enable signal (WE) on generic RAMs. Data are
latched on the rising edge of the signal.
22
2, 3, 16,
2022
A3 N.C.
No Connection. This pin should remain unconnected. On the EDIP, these pins are missing
by design.
17 17 A1 DS
Data Strobe or Read Input. The DS pin has two modes of operation depending on the level of
the MOT pin. When the MOT pin is connected to V
CC
, Motorola bus timing is selected. In this
mode, DS is a positive pulse during the latter portion of the bus cycle and is called data
strobe. During read cycles, DS signifies the time that the DS12R885 is to drive the
bidirectional bus. In write cycles, the trailing edge of DS causes the DS12R885 to latch the
written data. When the MOT pin is connected to GND, Intel bus timing is selected. DS
identifies the time period when the DS12R885 drives the bus with read data. In this mode, the
DS pin operates in a similar fashion as the output-enable (OE) signal on a generic RAM.
DS12R885/DS12CR887/DS12R887
RTCs with Constant-Voltage Trickle Charger
____________________________________________________________________ 11
Pin Description (continued)
PIN
SO EDIP
BGA
NAME FUNCTION
18 18 A2 RESET
Reset Input. The active-low RESET pin has no effect on the clock, calendar, or RAM. On
power-up, the RESET pin can be held low for a time to allow the power supply to
stabilize. The amount of time that RESET is held low is dependent on the application.
However, if RESET is used on power-up, the time RESET is low should exceed 200ms to
ensure that the internal timer that controls the DS12R885 on power-up has timed out.
When RESET is low and V
CC
is above V
PF
, the following occurs:
A. Periodic interrupt-enable (PIE) bit is cleared to 0.
B. Alarm interrupt-enable (AIE) bit is cleared to 0.
C. Update-ended interrupt-enable (UIE) bit is cleared to 0.
D. Periodic-interrupt flag (PF) bit is cleared to 0.
E. Alarm-interrupt flag (AF) bit is cleared to 0.
F. Update-ended interrupt flag (UF) bit is cleared to 0.
G. Interrupt-request status flag (IRQF) bit is cleared to 0.
H. IRQ pin is in the high-impedance state.
I. The device is not accessible until RESET is returned high.
J. Square-wave output-enable (SQWE) bit is cleared to 0.
In a typical application, RESET can be connected to V
CC
. This connection allows the
DS12R885 to go in and out of power fail without affecting any of the control registers.
19 19 A4 IRQ
Interrupt Request Output. The IRQ pin is an active-low output of the DS12R885 that can
be used as an interrupt input to a processor. The IRQ output remains low as long as the
status bit causing the interrupt is present and the corresponding interrupt-enable bit is
set. The processor program normally reads the C register to clear the IRQ pin. The
RESET pin also clears pending interrupts. When no interrupt conditions are present, the
IRQ level is in the high-impedance state. Multiple interrupting devices can be
connected to an IRQ bus, provided that they are all open drain. The IRQ pin is an open-
drain output and requires an external pullup resistor to V
CC
.
20 — V
BACKUP
Connection for Rechargeable Battery or Super Cap. This pin provides trickle charging
when V
CC
is greater than V
BACKUP
. On the DS12CR887 and DS12R887, the V
BACKUP
pin
is missing and is internally connected to a lithium cell.
21 — A5 RCLR
RAM Clear. The active-low RCLR pin is used to clear (set to logic 1) all 114 bytes of
general-purpose RAM, but does not affect the RAM associated with the RTC. To clear
the RAM, RCLR must be forced to an input logic 0 during battery-backup mode when
V
CC
is not applied. The RCLR function is designed to be used through a human
interface (shorting to ground manually or by a switch) and not to be driven with external
buffers. This pin is internally pulled up. Do not use an external pullup resistor on this
pin.
23 23 C4 SQW
Square-Wave Output. The SQW pin can output a signal from one of 13 taps provided by
the 15 internal divider stages of the RTC. The frequency of the SQW pin can be changed
by programming Register A, as shown in Table 3. The SQW signal can be turned on and
off using the SQWE bit in Register B. The SQW signal is not available when V
CC
is less
than V
PF
.
24 24
A6–A8,
B1–B8,
C6–C8
V
CC
DC Power Pin for Primary Power Supply. When VCC is applied within normal limits, the
device is fully accessible and data can be written and read. When V
CC
is below V
PF
reads and writes are inhibited.
DS12R885/DS12CR887/DS12R887
RTCs with Constant-Voltage Trickle Charger
12 ____________________________________________________________________
Detailed Description
The DS12R885 is a drop-in replacement for the
DS12885 RTC. The device provides 14 bytes of real-
time clock/calendar, alarm, and control/status registers
and 114 bytes of nonvolatile, battery-backed static
RAM. A time-of-day alarm, three maskable interrupts
with a common interrupt output, and a programmable
square-wave output are available. The DS12R885 also
operates in either 24-hour or 12-hour format with an
AM/PM indicator. A precision temperature-compensat-
ed circuit monitors the status of V
CC
. If a primary
power-supply failure is detected, the device automati-
cally switches to a backup supply. The backup supply
input supports either a rechargeable battery or a super
cap, and includes an integrated trickle charger. The
trickle charger is always enabled. The DS12R885 is
accessed through a multiplexed address/data bus that
supports Intel and Motorola modes.
The DS12R887 is a surface-mount package using the
DS12R885 die, a 32.768kHz crystal, and a recharge-
able battery. The device provides a real-time clock/cal-
endar, one time-of-day alarm, three maskable interrupts
with a common interrupt output, a programmable
square wave, and 114 bytes of nonvolatile, battery-
backed static RAM. The date at the end of the month is
automatically adjusted for months with fewer than 31
days, including correction for leap years. It also oper-
ates in either 24-hour or 12-hour format with an AM/PM
indicator. A precision temperature-compensated circuit
monitors the status of V
CC
. If a primary power failure is
detected, the device automatically switches to a back-
up battery included in the package. The device is
accessed through a multiplexed byte-wide interface,
which supports both Intel and Motorola modes.
The DS12CR887 EDIP integrates a DS12R885 die with
a crystal and battery. The charging circuit on the
DS12R885 die is disabled. The battery has sufficient
capacity to power the oscillator and registers for five
years in the absence of V
CC
at +25°C.
The DS12R887 BGA includes a crystal and a recharge-
able battery. A fully charged battery can power the oscil-
lator and registers (typical current at +25°C) in the
absence of V
CC
for approximately 11 days (10% of
capacity consumed) or 98 days (90% capacity con-
sumed). When the discharge depth is 10% of capacity,
the battery can be recharged up to 1,000 times. If the dis-
charge depth is 90% of capacity, the battery can be
recharged up to 30 times. Thus, the life of the device
would be approximately 30 years (11 days X 1,000
cycles) or 8 years (98 days x 30 cycles). Charging time to
full capacity is approximately two days with V
CC
applied.
Please consult related application notes for detailed
information on battery lifetime versus depth of dis-
charge, and expected product lifetime based upon
battery cycles.
Oscillator Circuit
The DS12R885 uses an external 32.768kHz crystal. The
oscillator circuit does not require any external resistors
or capacitors to operate. Table 1 specifies several crys-
tal parameters for the external crystal. Figure 1 shows a
functional schematic of the oscillator circuit. An enable
bit in the control register controls the oscillator.
Oscillator startup times are highly dependent upon
crystal characteristics, PC board leakage, and layout.
High ESR and excessive capacitive loads are the major
contributors to long startup times. A circuit using a
crystal with the recommended characteristics and
proper layout usually starts within one second.
COUNTDOWN
CHAIN
X1
X2
CRYSTAL
C
L
1C
L
2
RTC REGISTERS
DS12R885
Figure 1. Oscillator Circuit Showing Internal Bias Network
PARAMETER SYMBOL MIN TYP MAX UNITS
Nominal
Frequency
f
O
32.768 kHz
Series
Resistance
ESR 50 k
Load
Capacitance
C
L
12.5 pF
Table 1. Crystal Specifications*
*
The crystal, traces, and crystal input pins should be isolated
from RF generating signals. Refer to
Application Note 58:
Crystal Considerations with Dallas Real-Time Clocks (RTCs)
for
additional specifications.

DS12CR887-5+

Mfr. #:
Manufacturer:
Maxim Integrated
Description:
Real Time Clock RTC w/Constant V Trickle Charger
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union

Products related to this Datasheet