REV. C
AD9764
–12–
1.25 V for an I
OUTFS
= 20 mA to 1.00 V for an I
OUTFS
= 2 mA.
Operation beyond the positive compliance range will induce
clipping of the output signal which severely degrades the
AD9764’s linearity and distortion performance.
For applications requiring the optimum dc linearity, I
OUTA
and/
or I
OUTB
should be maintained at a virtual ground via an I-V op
amp configuration. Maintaining I
OUTA
and/or I
OUTB
at a virtual
ground keeps the output impedance of the AD9764 fixed, signifi-
cantly reducing its effect on linearity. However, it does not
necessarily lead to the optimum distortion performance due to
limitations of the I-V op amp. Note that the INL/DNL speci-
fications for the AD9764 are measured in this manner using
I
OUTA
. In addition, these dc linearity specifications remain
virtually unaffected over the specified power supply range of
2.7 V to 5.5 V.
Operating the AD9764 with reduced voltage output swings at
I
OUTA
and I
OUTB
in a differential or single-ended output configu-
ration reduces the signal dependency of its output impedance
thus enhancing distortion performance. Although the voltage
compliance range of I
OUTA
and I
OUTB
extends from –1.0 V to
+1.25 V, optimum distortion performance is achieved when the
maximum full-scale signal at I
OUTA
and I
OUTB
does not exceed
approximately 0.5 V. A properly selected transformer with a
grounded center-tap will allow the AD9764 to provide the re-
quired power and voltage levels to different loads while main-
taining reduced voltage swings at I
OUTA
and I
OUTB
. DC-coupled
applications requiring a differential or single-ended output con-
figuration should size R
LOAD
accordingly. Refer to Applying the
AD9764 section for examples of various output configurations.
The most significant improvement in the AD9764’s distortion
and noise performance is realized using a differential output
configuration. The common-mode error sources of both I
OUTA
and I
OUTB
can be substantially reduced by the common-mode
rejection of a transformer or differential amplifier. These
common-mode error sources include even-order distortion
products and noise. The enhancement in distortion performance
becomes more significant as the reconstructed waveform’s
frequency content increases and/or its amplitude decreases.
This is evident in Figure 14, which compares the differential
vs. single-ended performance of the AD9764 at 50 MSPS for
0.0 and –6.0 dBFS single tone waveforms over frequency.
The distortion and noise performance of the AD9764 is also
slightly dependent on the analog and digital supply as well as the
full-scale current setting, I
OUTFS
. Operating the analog supply at
5.0 V ensures maximum headroom for its internal PMOS current
sources and differential switches leading to improved distortion
performance as shown in Figure 8. Although I
OUTFS
can be set
between 2 mA and 20 mA, selecting an I
OUTFS
of 20 mA will
provide the best distortion and noise performance also shown in
Figure 8. The noise performance of the AD9764 is affected by
the digital supply (DVDD), output frequency, and increases
with increasing clock rate as shown in Figure 13. Operating the
AD9764 with low voltage logic levels between 3 V and 3.3 V
will slightly reduce the amount of on-chip digital noise.
In summary, the AD9764 achieves the optimum distortion and
noise performance under the following conditions:
(1) Differential Operation.
(2) Positive voltage swing at I
OUTA
and I
OUTB
limited to +0.5 V.
(3) I
OUTFS
set to 20 mA.
(4) Analog Supply (AVDD) set at 5.0 V.
(5) Digital Supply (DVDD) set at 3.0 V to 3.3 V with appro-
priate logic levels.
Note that the ac performance of the AD9764 is characterized
under the above mentioned operating conditions.
DIGITAL INPUTS
The AD9764’s digital input consists of 14 data input pins and a
clock input pin. The 14-bit parallel data inputs follow standard
positive binary coding where DB13 is the most significant bit
(MSB), and DB0 is the least significant bit (LSB). I
OUTA
pro-
duces a full-scale output current when all data bits are at Logic
1. I
OUTB
produces a complementary output with the full-scale
current split between the two outputs as a function of the input
code.
The digital interface is implemented using an edge-triggered
master slave latch. The DAC output is updated following the
rising edge of the clock as shown in Figure 1 and is designed to
support a clock rate as high as 125 MSPS. The clock can be
operated at any duty cycle that meets the specified latch pulse-
width. The setup and hold times can also be varied within the
clock cycle as long as the specified minimum times are met,
although the location of these transition edges may affect digital
feedthrough and distortion performance. Best performance is
typically achieved when the input data transitions on the falling
edge of a 50% duty cycle clock.
The digital inputs are CMOS-compatible with logic thresholds,
V
THRESHOLD,
set to approximately half the digital positive supply
(DVDD) or
V
THRESHOLD
= DVDD/2 (±20%)
The internal digital circuitry of the AD9764 is capable of operating
over a digital supply range of 2.7 V to 5.5 V. As a result, the
digital inputs can also accommodate TTL levels when DVDD is
set to accommodate the maximum high level voltage of the TTL
drivers V
OH(MAX)
. A DVDD of 3 V to 3.3 V will typically ensure
proper compatibility with most TTL logic families. Figure 29
shows the equivalent digital input circuit for the data and clock
inputs. The sleep mode input is similar with the exception that
it contains an active pull-down circuit, thus ensuring that the
AD9764 remains enabled if this input is left disconnected.
DVDD
DIGITAL
INPUT
Figure 29. Equivalent Digital Input
REV. C
AD9764
–13–
Since the AD9764 is capable of being updated up to 125 MSPS,
the quality of the clock and data input signals are important in
achieving the optimum performance. Operating the AD9764
with reduced logic swings and a corresponding digital supply
(DVDD) will result in the lowest data feedthrough and on-chip
digital noise. The drivers of the digital data interface circuitry
should be specified to meet the minimum setup and hold times
of the AD9764 as well as its required min/max input logic level
thresholds.
Digital signal paths should be kept short and run lengths
matched to avoid propagation delay mismatch. The insertion
of a low value resistor network (i.e., 20 to 100 ) between
the AD9764 digital inputs and driver outputs may be helpful in
reducing any overshooting and ringing at the digital inputs that
contribute to data feedthrough. For longer run lengths and high
data update rates, strip line techniques with proper termination
resistors should be considered to maintain “clean” digital inputs.
The external clock driver circuitry should provide the AD9764
with a low jitter clock input meeting the min/max logic levels
while providing fast edges. Fast clock edges will help minimize
any jitter that will manifest itself as phase noise on a recon-
structed waveform. Thus, the clock input should be driven by
the fastest logic family suitable for the application.
Note, that the clock input could also be driven via a sine wave,
which is centered around the digital threshold (i.e., DVDD/2)
and meets the min/max logic threshold. This will typically result
in a slight degradation in the phase noise, which becomes more
noticeable at higher sampling rates and output frequencies.
Also, at higher sampling rates, the 20% tolerance of the digital
logic threshold should be considered since it will affect the effec-
tive clock duty cycle and, subsequently, cut into the required
data setup and hold times.
SLEEP MODE OPERATION
The AD9764 has a power-down function that turns off the
output current and reduces the supply current to less than
8.5 mA over the specified supply range of 2.7 V to 5.5 V and
temperature range. This mode can be activated by applying a
logic level “1” to the SLEEP pin. This digital input also con-
tains an active pull-down circuit that ensures the AD9764 re-
mains enabled if this input is left disconnected. The SLEEP
input with active pull-down requires <40 µA of drive current.
The power-up and power-down characteristics of the AD9764
are dependent upon the value of the compensation capacitor
connected to COMP1. With a nominal value of 0.1 µF, the
AD9764 takes less than 5 µs to power down and approximately
3.25 ms to power back up. Note, the SLEEP MODE should not
be used when the external control amplifier is used as shown in
Figure 27.
POWER DISSIPATION
The power dissipation, P
D
, of the AD9764 is dependent on
several factors, including: (1) AVDD and DVDD, the power
supply voltages; (2) I
OUTFS
, the full-scale current output; (3)
f
CLOCK
, the update rate; and (4) the reconstructed digital input
waveform. The power dissipation is directly proportional to the
analog supply current, I
AVDD
, and the digital supply current,
I
DVDD
. I
AVDD
is directly proportional to I
OUTFS,
as shown in
Figure 30, and is insensitive to f
CLOCK
.
I
OUTFS
– mA
30
0
2204 6 8 10 12141618
25
20
15
10
5
I
AVDD
– mA
Figure 30. I
AVDD
vs. I
OUTFS
Conversely, I
DVDD
is dependent on both the digital input wave-
form, f
CLOCK
, and digital supply DVDD. Figures 31 and 32
show I
DVDD
as a function of full-scale sine wave output ratios
(f
OUT
/f
CLOCK
) for various update rates with DVDD = 5 V and
DVDD = 3 V, respectively. Note, how I
DVDD
is reduced by more
than a factor of 2 when DVDD is reduced from 5 V to 3 V.
RATIO – f
OUT
/f
CLK
18
16
0
0.01 10.1
I
DVDD
– mA
8
6
4
2
12
10
14
5MSPS
25MSPS
50MSPS
100MSPS
125MSPS
Figure 31. I
DVDD
vs. Ratio @ DVDD = 5 V
RATIO – f
OUT
/f
CLK
8
0
0.01 10.1
I
DVDD
– mA
6
4
2
5MSPS
25MSPS
50MSPS
100MSPS
125MSPS
Figure 32. I
DVDD
vs. Ratio @ DVDD = 3 V
REV. C
AD9764
–14–
APPLYING THE AD9764
OUTPUT CONFIGURATIONS
The following sections illustrate some typical output configura-
tions for the AD9764. Unless otherwise noted, it is assumed
that I
OUTFS
is set to a nominal 20 mA. For applications requir-
ing the optimum dynamic performance, a differential output
configuration is suggested. A differential output configuration
may consist of either an RF transformer or a differential op amp
configuration. The transformer configuration provides the opti-
mum high frequency performance and is recommended for any
application allowing for ac coupling. The differential op amp
configuration is suitable for applications requiring dc coupling, a
bipolar output, signal gain and/or level shifting.
A single-ended output is suitable for applications requiring a
unipolar voltage output. A positive unipolar output voltage will
result if I
OUTA
and/or I
OUTB
is connected to an appropriately
sized load resistor, R
LOAD
, referred to ACOM. This configura-
tion may be more suitable for a single-supply system requiring a
dc coupled, ground referred output voltage. Alternatively, an
amplifier could be configured as an I-V converter, thus convert-
ing I
OUTA
or I
OUTB
into a negative unipolar voltage. This con-
figuration provides the best dc linearity since I
OUTA
or I
OUTB
is
maintained at a virtual ground. Note, I
OUTA
provides slightly
better performance than I
OUTB
.
DIFFERENTIAL COUPLING USING A TRANSFORMER
An RF transformer can be used to perform a differential-to-
single-ended signal conversion as shown in Figure 33. A
differentially coupled transformer output provides the optimum
distortion performance for output signals whose spectral content
lies within the transformer’s passband. An RF transformer such
as the Mini-Circuits T1-1T provides excellent rejection of com-
mon-mode distortion (i.e., even-order harmonics) and noise
over a wide frequency range. It also provides electrical isolation
and the ability to deliver twice the power to the load. Trans-
formers with different impedance ratios may also be used for
impedance matching purposes. Note that the transformer
provides ac coupling only.
R
LOAD
AD9764
22
21
MINI-CIRCUITS
T1-1T
OPTIONAL R
DIFF
I
OUTA
I
OUTB
Figure 33. Differential Output Using a Transformer
The center tap on the primary side of the transformer must be
connected to ACOM to provide the necessary dc current path
for both I
OUTA
and I
OUTB
. The complementary voltages appear-
ing at I
OUTA
and I
OUTB
(i.e., V
OUTA
and V
OUTB
) swing sym-
metrically around ACOM and should be maintained with the
specified output compliance range of the AD9764. A differential
resistor, R
DIFF
, may be inserted in applications in which the
output of the transformer is connected to the load, R
LOAD
, via a
passive reconstruction filter or cable. R
DIFF
is determined by the
transformer’s impedance ratio and provides the proper source
termination that results in a low VSWR. Note that approxi-
mately half the signal power will be dissipated across R
DIFF
.
DIFFERENTIAL USING AN OP AMP
An op amp can also be used to perform a differential-to-single-
ended conversion as shown in Figure 34. The AD9764 is con-
figured with two equal load resistors, R
LOAD
, of 25 . The
differential voltage developed across I
OUTA
and I
OUTB
is con-
verted to a single-ended signal via the differential op amp con-
figuration. An optional capacitor can be installed across I
OUTA
and I
OUTB
, forming a real pole in a low-pass filter. The addition
of this capacitor also enhances the op amp’s distortion perfor-
mance by preventing the DAC’s high slewing output from over-
loading the op amp’s input.
AD9764
22
I
OUTA
I
OUTB
21
C
OPT
500V
225V
225V
500V
25V25V
AD8047
Figure 34. DC Differential Coupling Using an Op Amp
The common-mode rejection of this configuration is typically
determined by the resistor matching. In this circuit, the differ-
ential op amp circuit using the AD8047 is configured to provide
some additional signal gain. The op amp must operate from a
dual supply since its output is approximately ±1.0 V. A high
speed amplifier capable of preserving the differential perform-
ance of the AD9764 while meeting other system level objectives
(i.e., cost, power) should be selected. The op amps differential
gain, its gain setting resistor values and full-scale output swing
capabilities should all be considered when optimizing this circuit.
The differential circuit shown in Figure 35 provides the neces-
sary level-shifting required in a single supply system. In this
case, AVDD, which is the positive analog supply for both the
AD9764 and the op amp, is also used to level-shift the differ-
ential output of the AD9764 to midsupply (i.e., AVDD/2). The
AD8041 is a suitable op amp for this application.
AD9764
22
I
OUTA
I
OUTB
21
C
OPT
500V
225V
225V
1kV
25V25V
AD8041
1kV
AVDD
Figure 35. Single-Supply DC Differential Coupled Circuit
SINGLE-ENDED UNBUFFERED VOLTAGE OUTPUT
Figure 36 shows the AD9764 configured to provide a unipolar
output range of approximately 0 V to +0.5 V for a doubly termi-
nated 50 cable since the nominal full-scale current, I
OUTFS
, of
20 mA flows through the equivalent R
LOAD
of 25 . In this case,
R
LOAD
represents the equivalent load resistance seen by I
OUTA
or
I
OUTB
. The unused output (I
OUTA
or I
OUTB
) can be connected to
ACOM directly or via a matching R
LOAD
. Different values of

AD9764ARU

Mfr. #:
Manufacturer:
Analog Devices Inc.
Description:
Digital to Analog Converters - DAC 14-Bit 100 MSPS
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union