Semiconductor Components Industries, LLC, 2004
May, 2004 − Rev. 8
1 Publication Order Number:
NBSG86A/D
NBSG86A
2.5V/3.3VSiGe Differential
Smart Gate with Output
Level Select
The NBSG86A is a multi−function differential Logic Gate which
can be configured as an AND/NAND, OR/NOR, XOR/XNOR, or 2:1
MUX. This device is part of the GigaComm family of high
performance Silicon Germanium products. The device is housed in a
low profile 4x4 mm, 16−pin, flip−chip BGA or a 3x3 mm 16 pin QFN
package.
Differential inputs incorporate internal 50 termination resistors
and accept NECL (Negative ECL), PECL (Positive ECL),
LVCMOS/LVTTL, CML, or LVDS. The OLS input is used to
program the peak−to−peak output amplitude between 0 and 800 mV
in five discrete steps.
The NBSG86A employs input default circuitry so that under open
input conditions (D
x
, D
x
, VTD
x
, VTD
x,
VTSEL) the outputs of the
device will remain stable.
Maximum Input Clock Frequency > 8 GHz Typical
Maximum Input Data Rate > 8 Gb/s Typical
165 ps Typical Propagation Delay
40 ps Typical Rise and Fall Times
Selectable Swing PECL Output with Operating Range:
V
CC
= 2.375 V to 3.465 V with V
EE
= 0 V
Selectable Swing NECL Output with NECL Inputs with
Operating Range: V
CC
= 0 V with V
EE
= −2.375 V to −3.465 V
Selectable Output Level (0 V, 200 mV, 400 mV,
600 mV, or 800 mV Peak−to−Peak Output)
50 Internal Input Termination Resistors
*For further details, refer to Application Note
AND8002/D
FCBGA−16
BA SUFFIX
CASE 489
MARKING
DIAGRAM*
SG
86A
Device Package Shipping
ORDERING INFORMATION
NBSG86ABA 4x4 mm
FCBGA−16
100 Units/Tray
NBSG86ABAR2 4x4 mm
FCBGA−16
500/
Tape & Reel
LYW
Board Description
NBSG86ABAEVB NBSG86ABA Evaluation Board
http://onsemi.com
A = Assembly Location
L = Wafer Lot
Y = Year
W = Work Week
SG86A
ALYW
QFN−16
MN SUFFIX
CASE 485G
NBSG86AMN 3x3 mm
QFN−16
123 Units/Rail
NBSG86AMNR2 3x3 mm
QFN−16
3000/
Tape & Reel
For information on tape and reel specifications,
including part orientation and tape sizes, please
refer to our Tape and Reel Packaging Specifications
Brochure, BRD8011/D.
NBSG86A
http://onsemi.com
2
VTD1
SEL
SEL
OLS
VTD0 D0
VTSEL
D1 D1 VTD1
V
CC
V
EE
D0 VTD0
Q
Q
A
B
C
D
1234
Figure 1. BGA−16 Pinout (Top View)
VTD1 D1 D1 VTD1
VTD0 D0 D0 VTD0
V
EE
Q
Q
V
CC
OLS
SEL
SEL
VTSEL
5678
16 15 14 13
12
11
10
9
1
2
3
4
NBSG86A
Exposed Pad
(EP)
Figure 2. QFN−16 Pinout (Top View)
Table 1. Pin Description
Pin
BGA QFN
Name I/O Description
C2 1 OLS
(Note 3)
Input Input Pin for the Output Level Select (OLS). See Table 2.
C1 2 SEL ECL, CML,
LVCMOS, LVDS,
LVTTL Input
Inverted Differential Select Logic Input.
B1 3 SEL ECL, CML,
LVCMOS, LVDS,
LVTTL Input
Noninverted Differential Select Logic Input.
B2 4 VTSEL Common Internal 50 Termination Pin for SEL/SEL. See Table 7. (Note 1)
A1 5 VTD1 Internal 50 termination pin. See Table 7. (Note 1)
A2 6 D1 ECL, CML,
LVCMOS, LVDS,
LVTTL Input
Noninverted Differential Input 1. Internal 75 k to V
EE
.
A3 7 D1 ECL, CML,
LVCMOS, LVDS,
LVTTL Input
Inverted Differential Input 1. Internal 75 k to V
EE
and 36.5 k to V
CC
.
A4 8 VTD1 Internal 50 Termination Pin. See Table 7. (Note 1)
B3 9 V
CC
Positive Supply Voltage (Note 2)
B4 10 Q RSECL Output Noninverted Differential Output. Typically Terminated with 50 Resistor to
V
TT
= V
CC
− 2 V.
C4 11 Q RSECL Output Inverted Differential Output. Typically Terminated with 50 Resistor to
V
TT
= V
CC
− 2 V
C3 12 V
EE
Negative Supply Voltage (Note 2)
D4 13 VTD0 Internal 50 Termination Pin. See Table 7. (Note 1)
D3 14 D0 ECL, CML,
LVCMOS, LVDS,
LVTTL Input
Inverted Differential Input 0. Internal 75 k to V
EE
and 36.5 k to V
CC
.
D2 15 D0 ECL, CML,
LVCMOS, LVDS,
LVTTL Input
Noninverted Differential Input 0. Internal 75 k to V
EE
.
D1 16 VTD0 Internal 50 Termination Pin. See Table 7. (Note 1)
N/A EP Exposed Pad. The thermally exposed pad on package bottom (see case drawing)
must be attached to a heat−sinking conduit.
1. In the differential configuration when the input termination pins (VTDx, VTDx, VTSEL) are connected to a common termination voltage,
and if no signal is applied then the device will be susceptible to self−oscillation.
2. All V
CC
and V
EE
pins must be externally connected to Power Supply to guarantee proper operation.
3. When an output level of 400 mV is desired and V
CC
− V
EE
> 3.0 V, 2 k resistor should be connected from OLS pin to V
EE
.
NBSG86A
http://onsemi.com
3
Table 2. OUTPUT LEVEL SELECT OLS
OLS Q/Q VPP OLS Sensitivity
V
CC
800 mV OLS − 75 mV
V
CC
− 0.4 V 200 mV OLS 150 mV
V
CC
− 0.8 V 600 mV OLS 100 mV
V
CC
− 1.2 V 0 OLS 75 mV
V
EE
(Note 4) 400 mV OLS 100 mV
Float 600 mV N/A
4. When an output level of 400 mV is desired and V
CC
− V
EE
> 3.0 V, 2.0 k resistor should be
connected from OLS to V
EE
.
Figure 3. Logic Diagram
D0
Q
SEL
VTD0
Q
SEL
VTD0
50
50
D0
D1
VTD1
VTD1
50
50
D1
50
50
VTSEL
R
1
R
2
R
1
R
1
R
2
R
1
Q
SEL
VTD0
Q
SEL
VTD0
50
50
VTD1
VTD1
50
50
50
50
VTSEL
Figure 4. Configuration for AND/NAND Function
V
CC
VT or
V
BB
D0
D0
D1
D1
V
EE
V
CC
Table 3. AND/NAND TRUTH TABLE (Note 5)
*
D0 D1 SEL Q
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
5. D0, D1, SEL are inverse of D0, D1, SEL unless specified other-
wise.

NBSG86ABAEVB

Mfr. #:
Manufacturer:
ON Semiconductor
Description:
Clock & Timer Development Tools BBG NBSG86ABA EVAL BOARD
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union

Products related to this Datasheet