7
LTC1968
1968f
GND (Pin 1): Ground. The power return pin.
IN1 (Pin 2): Differential Input. DC coupled (polarity is
irrelevant).
IN2 (Pin 3): Differential Input. DC coupled (polarity is
irrelevant).
V
OUT
(Pin 5): Output Voltage. Pin 5 is high impedance. The
RMS averaging is accomplished with a single shunt ca-
pacitor from Pin 5 to OUT RTN. The transfer function is
given by:
V OUT RTN Average IN IN
OUT
––
()
=
()
21
2
UU
U
PI FU CTIO S
OUT RTN (Pin 6): Output Return. The output voltage is
created relative to this pin. The V
OUT
and OUT RTN pins
are not balanced and this pin should be tied to a low
impedance, both AC and DC. Although Pin 6 is often tied
to GND, it can also be tied to any arbitrary voltage:
GND < OUT RTN < (V
+
– Max Output)
V
+
(Pin 7): Positive Voltage Supply. 4.5V to 5.5V.
ENABLE (Pin 8): An Active-Low Enable Input. LTC1968 is
debiased if open circuited or driven to V
+
. For normal
operation, pull to GND.
APPLICATIO S I FOR ATIO
WUUU
RMS-TO-DC CONVERSION
Definition of RMS
RMS amplitude is the consistent, fair and standard way to
measure and compare dynamic signals of all shapes and
sizes. Simply stated, the RMS amplitude is the heating
potential of a dynamic waveform. A 1V
RMS
AC waveform
will generate the same heat in a resistive load as will 1V DC.
Mathematically, RMS is the “Root of the Mean of the
Square”:
VV
RMS
=
2
+
R1V DC
R
1968 F01
SAME
HEAT
1V AC
RMS
R1V (AC + DC) RMS
Figure 1
Alternatives to RMS
Other ways to quantify dynamic waveforms include peak
detection and average rectification. In both cases, an
average (DC) value results, but the value is only accurate
at the one chosen waveform type for which it is calibrated,
typically sine waves. The errors with average rectification
are shown in Table 1. Peak detection is worse in all cases
and is rarely used.
Table 1. Errors with Average Rectification vs True RMS
AVERAGE
RECTIFIED
WAVEFORM V
RMS
(V) ERROR*
Square Wave 1.000 1.000 11%
Sine Wave 1.000 0.900 *Calibrate for 0% Error
Triangle Wave 1.000 0.866 3.8%
SCR at 1/2 Power, 1.000 0.637 29.3%
Θ = 90°
SCR at 1/4 Power, 1.000 0.536 40.4%
Θ = 114°
The last two entries of Table 1 are chopped sine waves as
is commonly created with thyristors such as SCRs and
Triacs. Figure 2a shows a typical circuit and Figure 2b
shows the resulting load voltage, switch voltage and load
8
LTC1968
1968f
the lowpass filter. The input to the LPF is the calculation
from the multiplier/divider; (V
IN
)
2
/V
OUT
. The lowpass
filter will take the average of this to create the output,
mathematically:
APPLICATIO S I FOR ATIO
WUUU
currents. The power delivered to the load depends on the
firing angle, as well as any parasitic losses such as switch
“ON” voltage drop. Real circuit waveforms will also typi-
cally have significant ringing at the switching transition,
dependent on exact circuit parasitics. For the purposes of
this data sheet, “SCR Waveforms” refers to the ideal
chopped sine wave, though the LTC1968 will do faithful
RMS-to-DC conversion with real SCR waveforms as well.
The case shown is for Θ = 90°, which corresponds to 50%
of available power being delivered to the load. As noted in
Table 1, when Θ = 114°, only 25% of the available power
is being delivered to the load and the power drops quickly
as Θ approaches 180°.
With an average rectification scheme and the typical
calibration to compensate for errors with sine waves, the
RMS level of an input sine wave is properly reported; it is
only with a non-sinusoidal waveform that errors occur.
Because of this calibration, and the output reading in
V
RMS
, the term True-RMS got coined to denote the use of
an actual RMS-to-DC converter as opposed to a calibrated
average rectifier.
CONTROL
V
LOAD
AC
MAINS
V
LINE
V
THY
1968 F02a
+
+
+
I
LOAD
V
LINE
Θ
V
LOAD
V
THY
I
LOAD
1968 F02b
Figure 2a
Figure 2b
How an RMS-to-DC Converter Works
Monolithic RMS-to-DC converters use an implicit compu-
tation to calculate the RMS value of an input signal. The
fundamental building block is an analog multiply/divide
used as shown in Figure 3. Analysis of this topology is
easy and starts by identifying the inputs and the output of
V
V
V
V
V
V
so
V
V
V
and
VVor
V V RMS V
OUT
IN
OUT
OUT
IN
OUT
OUT
IN
OUT
OUT IN
OUT IN IN
=
()
()
=
()
=
()
()
=
()
=
()
=
()
2
2
2
2
22
2
,
,
,
,
Because V is DC,
V
OUT
IN
Figure 3. RMS-to-DC Converter with Implicit Computation
V
IN
V
OUT
1968 F03
÷×
LPF
V
V
IN
OUT
()
2
Unlike the prior generation RMS-to-DC converters, the
LTC1968 computation does NOT use log/antilog circuits,
which have all the same problems, and more, of log/
antilog multipliers/dividers, i.e., linearity is poor, the band-
width changes with the signal amplitude and the gain drifts
with temperature.
How the LTC1968 RMS-to-DC Converter Works
The LTC1968 uses a completely new topology for RMS-to-
DC conversion, in which a ∆Σ modulator acts as the
divider, and a simple polarity switch is used as the multi-
plier
1
as shown in Figure 4.
1
Protected by multiple patents.
9
LTC1968
1968f
APPLICATIO S I FOR ATIO
WUUU
Note that the internal scalings are such that the ∆Σ output
duty cycle is limited to 0% or 100% only when V
IN
exceeds
±4 • V
OUT
.
Linearity of an RMS-to-DC Converter
Linearity may seem like an odd property for a device that
implements a function that includes two very nonlinear
processes: squaring and square rooting.
However, an RMS-to-DC converter has a transfer func-
tion, RMS volts in to DC volts out, that should ideally have
a 1:1 transfer function. To the extent that the input to
output transfer function does not lie on a straight line, the
part is nonlinear.
A more complete look at linearity uses the simple model
shown in Figure 5. Here an ideal RMS core is corrupted by
both input circuitry and output circuitry that have imper-
fect transfer functions. As noted, input offset is introduced
in the input circuitry, while output offset is introduced in
the output circuitry.
Any nonlinearity that occurs in the output circuity will
corrupt the RMS in to DC out transfer function. A nonlin-
earity in the input circuitry will typically corrupt that
transfer function far less simply because with an AC input,
the RMS-to-DC conversion will average the nonlinearity
from a whole range of input values together.
But the input nonlinearity will still cause problems in an
RMS-to-DC converter because it will corrupt the accuracy
as the input signal shape changes. Although an RMS-to-
DC converter will convert any input waveform to a DC
output, the accuracy is not necessarily as good for all
waveforms as it is with sine waves. A common way to
describe dynamic signal wave shapes is Crest Factor. The
crest factor is the ratio of the peak value relative to the RMS
value of a waveform. A signal with a crest factor of 4, for
instance, has a peak that is four times its RMS value.
The ∆Σ modulator has a single-bit output whose average
duty cycle (D) will be proportional to the ratio of the input
signal divided by the output. The ∆Σ is a 2nd order
modulator with excellent linearity. The single-bit output is
used to selectively buffer or invert the input signal. Again,
this is a circuit with excellent linearity, because it operates
at only two points: ±1 gain; the average effective multipli-
cation over time will be on the straight line between these
two points. The combination of these two elements again
creates a lowpass filter input signal equal to (V
IN
)
2
/V
OUT
,
which, as shown above, results in RMS-to-DC conversion.
The lowpass filter performs the averaging of the RMS
function and must be a lower corner frequency than the
lowest frequency of interest. For line frequency measure-
ments, this filter is simply too large to implement on-chip,
but the LTC1968 needs only one capacitor on the output
to implement the lowpass filter. The user can select this
capacitor depending on frequency range and settling time
requirements, as will be covered in the Design Cookbook
section to follow.
This topology is inherently more stable and linear than log/
antilog implementations primarily because all of the signal
processing occurs in circuits with high gain op amps
operating closed loop.
More detail of the LTC1968 inner workings is shown in the
Simplified Schematic towards the end of this data sheet.
Figure 4. Topology of LTC1968
-Σ
REF
V
IN
V
OUT
LPF
1968 F04
±1
D
V
V
IN
OUT
α
INPUT CIRCUITRY
• V
IOS
• INPUT NONLINEARITY
IDEAL
RMS-TO-DC
CONVERTER
OUTPUT CIRCUITRY
• V
OOS
• OUTPUT NONLINEARITY
INPUT OUTPUT
1968 F05
Figure 5. Linearity Model of an RMS-to-DC Converter

LTC1968IMS8#TRPBF

Mfr. #:
Manufacturer:
Analog Devices Inc.
Description:
Power Management Specialized - PMIC Prec Wide B&width, RMS-to-DC Conv
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union