REV. B
AD8309
–10–
sensitivity to disturbances on the supply lines. With careful
design, the sensitivities to many other parametric variations, and
the effects of temperature and supply voltage, can be reduced to
negligible proportions.
A/0 A/0 A/0
g
m
g
m
g
m
g
m
STAGE 1 STAGE 2 STAGE N
R
SLOPE
V
LOG
V
LIM
V
IN
+TOP-END
DETECTORS
CURRENT-SUMMING LINE
Figure 24. Basic Log Amp Structure Using A/0 Stages and
Transconductance (g
m
) Cells for Summing
The output of each gain cell has an associated transconductance
(g
m
) cell, which converts the differential output voltage of the
cell to a pair of differential currents; these are summed by sim-
ply connecting the outputs of all the g
m
(detector) stages in
parallel. The total current is then converted back to a voltage by
a transresistance stage, which determines the slope of the loga-
rithmic output. This general scheme is depicted, in a simplified
single-sided form, in Figure 24. Additional detectors, driven by
a passive attenuator, may be added to extend the top end of the
dynamic range.
The slope voltage may now be decoupled from the knee-voltage
E
K
= 2kT/q, which is inherently PTAT. The detector stages are
biased with currents (not shown in the Figure) which can be
derived from a band-gap reference and thus be stable with tem-
perature. This is the architecture used in the AD8309. It affords
complete control over the magnitude and temperature behavior
of the logarithmic slope.
A further step is yet needed to achieve the demodulation response,
required in a log-limiter amp is to convert an alternating input
into a quasi- dc baseband output. This is achieved by modifying
the g
m
cells used for summation purposes to implement the
rectification function. Early log amps based on the progressive
compression technique used half-wave rectifiers, which made
post-detection filtering difficult. The AD640 was the first com-
mercial monolithic log amp to use a full-wave rectifier; this
proprietary practice has been used in all subsequent Analog
Devices types.
We can model these detectors as being essentially linear g
m
cells,
but producing an output current that is independent of the sign
of the voltage applied to the input. That is, they implement the
absolute-value function. Since the output from the later A/0 stages
closely approximates an amplitude symmetric square wave for
even moderate input levels, the current output from each detec-
tor is almost constant over each period of the input. Somewhat
earlier detectors stages in the chain produce a waveform having
only very brief “dropouts” at twice the input frequency. Only
those detectors nearest the log amp’s input produce a low level
waveform that is approximately sinusoidal. When all these (cur-
rent mode) outputs are summed, the resulting signal has a wave-
form which is readily filtered, to provide a low residual ripple on
the output.
Intercept Calibration
Monolithic log amps from Analog Devices incorporate accurate
means to position the intercept voltage V
X
(or equivalent sine-
wave power for a demodulating log amp, when driven at a spe-
cific impedance level). Using the scheme shown in Figure 24,
the value of the intercept level departs considerably from that
predicted by the simple theory. Nevertheless, the intrinsic inter-
cept voltage is still proportional to E
K
, which is PTAT (propor-
tional to absolute temperature).
Recalling that the addition of an offset to the output produces
an effect which is indistinguishable from a change in the posi-
tion of the intercept, it will be apparent that we can cancel the
“left-right” motion of V
X
resulting from the temperature varia-
tion of E
K
by simply adding an offset at its demodulated output
having the required temperature behavior.
The precise temperature-shaping of the intercept-positioning
offset can result in a log amp having stable scaling parameters,
making it a true measurement device, for example, as a calibrated
Received Signal Strength Indicator (RSSI). In this application,
one is more interested in the value of the output for an input
waveform which is often sinusoidal (CW). The input level be
stated as an equivalent power, in dBm, but it is essential to
know the impedance level at which this “power” is presumed to
be measured. In an impedance of 50 , 0 dBm (1 mW) corre-
sponds to a sinusoidal amplitude of 316.2 mV (223.6 mV rms).
For the AD8309, the intercept may be specified in dBm when
the input impedance is lowered to 50 , by the addition of a
shunt resistor of 52.3 , in which case it occurs at –95 dBm.
However, the response is actually to the voltage at the input, not
the power in the termination resistor, and should be specified in
dBV. A –95 dBm sine input across a 50 resistance corre-
sponds to an amplitude of 5.6 µV, or –108 dBV, where 0 dBV is
specified as a sine waveform of 1 V rms, that is, 2.8 V p-p.
Note that a log amp’s intercept is a function of waveform. For
example, a square-wave input will read 6 dB
higher than a sine-
wave of the same amplitude, and a Gaussian noise input 0.5 dB
higher than a sine wave of the same rms value. Further, a log
amp driven by the sum of two sinusoidal voltages of equal am-
plitude will show an output that is only 2.1 dB higher than the
response for a single sine wave drive, rather than the 3 dB that
might be expected if the device truly responded to input power.
These are characteristics exhibited by all demodulating log amps.
Dynamic Range
The lower end of the dynamic range is determined largely by the
thermal noise floor, measured at the input of the amplifier chain.
For the AD8309, the short-circuit input-referred noise-spectral
density is 1.1 nV/Hz, and 1.275 nV/Hz when driven from a
net source impedance of 25 (a terminated 50 ). This corre-
sponds to a noise power of –78 dBm in a 500 MHz bandwidth.
The upper end of the dynamic range is extended upward by the
addition of top-end detectors driven by a tapped attenuator. These
smaller signals are applied to additional full-wave detectors
whose outputs are summed with those of the main detectors.
With care in design, this extension in the dynamic range can be
‘seamless’ over the full frequency range. For the AD8309 it
amounts to a further 48 dB. When using a supply of 4.5 V or
greater, an input amplitude of 4 V can be accommodated, corre-
sponding to a power level of +22 dBm in 50 . (A larger input
voltage may cause damage.)
REV. B
AD8309
–11–
The total dynamic range of the AD8309, defined as the ratio
of the maximum permissible input to the noise floor, is thus
100 dB. Good accuracy is provided over a substantial part of
this range.
Input Matching
Monolithic log amps present a nominal input impedance much
higher than 50 . For the AD8309, this can be modeled as 1 k
shunted by 2.5 pF, at frequencies up to 300 MHz. Thus, a
simple input matching network can considerably improve the
basic sensitivity , when driving from a low-impedance source, by
increasing the voltage applied to the input. For a 50:1000
transformation, the voltage gain is 13 dB, and the whole dy-
namic range moves downward by this amount; that is, the inter-
cept is shifted to –121 dBV (–108 dBm at the primary 50
input). Note that while useful voltage gain is achieved in this
way, it does not follow that the noise-figure is minimal at the
optimum power match.
Offset Control
In a monolithic log amp, direct-coupling between the stages is
invariably utilized for practical reasons. Now, a dc offset voltage
in the early stages of the chain is indistinguishable from a “real”
signal. If as high as 400 µV, it would be 20 dB larger than the
smallest resolvable ac signal (40 µV), reducing the dynamic
range by this amount. This problem is solved by using a global
feedback path from the last stage to the first. The high-frequency
components of the signal must be removed; this achieved in the
AD8309 by an on-chip low-pass filter, providing sufficient sup-
pression of HF feedback to allow accurate operation down to at
least 5 MHz. Useful operation at lower frequencies remains
possible, although a particular device having a large dc offset will
exhibit a reduction in the low end region of the dynamic range.
PRODUCT OVERVIEW
The AD8309 is built on an advanced dielectrically-isolated
complementary bipolar process using thin-film resistor technol-
ogy for accurate scaling. It follows well-developed foundations
proven over a period of some fifteen years, with constant refine-
ment. The backbone of the AD8309 (Figure 25) comprises a
chain of six main amplifier/limiter stages, each having a gain of
12.04 dB (×4) and small-signal –3 dB bandwidth of 850 MHz.
The input interface at INHI and INLO (Pins 4 and 5) is fully
differential. Thus it may be driven from either single-sided or
balanced inputs, the latter being required at the very top end of
the dynamic range, where the total differential drive may be as
large as 4 V in amplitude.
The first six stages, also used in developing the logarithmic
RSSI output, are followed by a versatile programmable output,
and thus programmable gain, final limiter section. Its open-
collector outputs are also fully differential, at LMHI and LMLO
(Pins 12 and 13). This output stage provides a gain of 18 dB
when using equal valued load and bias setting resistors and the
pin-to-pin output is used. The overall voltage gain is thus 100 dB.
When using R
LIM
= R
LOAD
= 200 , the additional current
consumption in the limiter is approximately 2.8 mA, of which
2 mA goes to the load. The ratio depends on R
LIM
(for example,
when 20 , the efficiency is 90%), and the voltage at the pin
LMDR is rather more than 400 mV, but the total load current is
accurately (400 mV)/R
LIM
.
The rise and fall times of the hard-limited (essentially square-
wave) voltage at the outputs are typically 0.4 ns, when driven by
a sine wave input having an amplitude of 100 mV or greater,
and R
LOAD
= 50 . The change in time-delay (“phase skew”)
over the input range –83 dBV (100 mV in amplitude, or –70 dBm
in 50 ) to –3 dBV (1 V or +10 dBm) is ±83 ps (±3° at 100 MHz).
12dB LIM
DET
12dB
DET DET4 3 DET
LADR ATTEN
INHI
INLO
I-V
BIAS
CTRL
TEN DETECTORS SPACED 12dB
INTERCEPT
TEMP COMP
BAND-GAP
REFERENCE
ENBL
GAIN
BIAS
LMHI
LMLO
LMDR
VLOG
FLTR
SIX STAGES TOTAL GAIN 72dB TYP GAIN 18dB
SLOPE
BIAS
12dB
Figure 25. Main Features of the AD8309
The six main cells and their associated full-wave detectors,
having a transconductance (g
m
) form, handle the lower part of
the dynamic range. Biasing for these cells is provided by two
references, one of which determines their gain, the other being a
band-gap cell which determines the logarithmic slope, and stabi-
lizes it against supply and temperature variations. A special dc-
offset-sensing cell (not shown in Figure 25) is placed at the end
of this main section, and used to null any residual offset at the
input, ensuring accurate response down to the noise floor. The
first amplifier stage provides a short-circuited voltage-noise
spectral-density of 1.07 nV/Hz.
The last detector stage includes a modification to temperature-
stabilize the log-intercept, which is accurately positioned so as to
make optimal use of the full output voltage range. Four further
“top end” detectors are placed at 12.04 dB taps along a passive
attenuator, to handle the upper part of the range. The differen-
tial current-mode outputs of all ten detectors stages are summed
with equal weightings and converted to a single-sided voltage by
the output stage, generating the logarithmic (or RSSI) output at
VLOG (Pin 16), nominally scaled 20 mV/dB (that is, 400 mV
per decade). The junction between the lower and upper regions
is seamless, and the logarithmic law-conformance is typically
well within ±0.4 dB from –83 dBV to +7 dBV (–70 dBm to
+10 dBm).
The full-scale rise time of the RSSI output stage, which operates
as a two-pole low-pass filter with a corner frequency of 3.5 MHz, is
about 200 ns. A capacitor connected between FLTR (Pin 10)
and VLOG can be used to lower the corner frequency (see be-
low). The output has a minimum level of about 0.34 V (corre-
sponding to a noise power of –78 dBm, or 17 dB above the
nominal intercept of –95 dBm). This rather high baseline level
ensures that the pulse response remains unimpaired at very low
inputs.
The maximum RSSI output depends on the supply voltage and
the load. An output of 2.34 V, that is, 20 mV/dB × (12 + 105) dB,
is guaranteed when using a supply voltage of 4.5 V or greater
and a load resistance of 50 or higher, for a differential input
of 9 dBV (a 4 V sine amplitude, using balanced drives). When
using a 3 V supply, the maximum differential input may still be
as high as –3 dBV (1 V sine amplitude), and the corresponding
RSSI output of 2.1 V, that is, 20 mV/dB × (0 + 105) dB is also
guaranteed.
REV. B
AD8309
–12–
A fully-programmable output interface is provided for the hard-
limited signal, permitting the user to establish the optimal output
current from its differential current-mode output. Its magnitude
is determined by the resistor R
LIM
placed between LMDR (Pin
9) and ground, across which a nominal bias voltage of ~400 mV
appears. Using R
LIM
= 200 , this dc bias current, which is
commutated alternately to the output pins, LMHI and LMLO,
by the signal, is 2 mA. (The total supply current is somewhat
higher).
These currents may readily be converted to voltage form by the
inclusion of load resistors, which will typically range from a few
tens of ohms at 500 MHz to as high as 2 k in lower frequency
applications. Alternatively, a resonant load may be used to ex-
tract the fundamental signal and modulation sidebands, mini-
mizing the out-of-band noise. A transformer or impedance
matching network may also be used at this output. The peak
voltage swing down from the supply voltage may be 1.2 V, be-
fore the output transistors go into saturation. (The Applications
section provides further information on the use of this interface).
The supply current for all sections except the limiter output
stage, and with no load attached to the RSSI output, is nomi-
nally 16 mA at T
A
= 27°C, substantially independent of supply
voltage. It varies in direct proportion to the absolute tempera-
ture (PTAT). The RSSI load current is simply the voltage at
VLOG divided by the load resistance (e.g., 2.4 mA max in a
1 k load). The limiter supply current is 1.1 times that flowing
in R
LIM
. The AD8309 may be enabled/disabled by a CMOS-
compatible level at ENBL (Pin 8).
In the following simplified interface diagrams, the components
denoted with an uppercase “R” are thin-film resistors having a
very low temperature-coefficient of resistance and high linearity
under large-signal conditions. Their absolute value is typically
within ±20%. Capacitors denoted using an uppercase “C” have
a typical tolerance of ±15% and essentially zero temperature or
voltage sensitivity. Most interfaces have additional small junc-
tion capacitances associated with them, due to active devices or
ESD protection; these may be neither accurate nor stable. Com-
ponent numbering in each of these interface diagrams is local.
Enable Interface
The chip-enable interface is shown in Figure 26. The current in
R1 controls the turn-on and turn-off states of the band-gap
reference and the bias generator, and is a maximum of 100 µA
when Pin 8 is taken to 5 V. Left unconnected, or at any voltage
below 1 V, the AD8309 will be disabled, when it consumes a
sleep current of much less than 1 µA (leakage currents only); when
tied to the supply, or any voltage above 2 V, it will be fully en-
abled. The internal bias circuitry requires approximately 300 ns
for either OFF or ON, while a delay of some 6 µs is required for
the supply current to fall below 10 µA.
1.3kV
50kV 4kV
COMM
ENBL
R1
60kV
TO BIAS
ENABLE
Figure 26. Enable Interface
Input Interface
Figure 27 shows the essentials of the signal input interface. The
parasitic capacitances to ground are labeled C
P
; the differential
input capacitance, C
D
, mainly due to the diffusion capacitance
of Q1 and Q2. In most applications both input pins are ac-
coupled. The switch S closes when Enable is asserted. When
disabled, the inputs float, bias current I
E
is shut off, and the
coupling capacitors remain charged. If the log amp is disabled
for long periods, small leakage currents will discharge these
capacitors. If they are poorly matched, charging currents at
power-up can generate a transient input voltage which may
block the lower reaches of the dynamic range until it has be-
come much less than the signal.
In most applications, the input signal will be single-sided, and
may be applied to either Pin 4 or 5, with the remaining pin ac-
coupled to ground. Under these conditions, the largest input
signal that can be handled is –3 dBV (sine amplitude of 1 V)
when operating from a 3 V supply ; a +3 dBV input may be
handled using a supply of 4.5 V or greater. When using a fully-
balanced drive, the +3 dBV level may be achieved for the sup-
plies down to 2.7 V and +9 dBV using >4.5 V. For frequencies
in the range 10 MHz to 200 MHz these high drive levels are
easily achieved using a matching network (see later). Using such
a network, having an inductor at the input, the input transient is
eliminated.
R
IN
= 1kV
C
C
C
C
SIGNAL
INPUT
INLO
INHI
VPS1
COMM
1.78V
3.65kV 3.65kV
1.725V
1.725V
C
D
2.5pF
I
B
= 15mA
(TOP-END
DETECTORS)
2.6kV
C
P
C
P
R
IN
= 3kV
Q1
20e
Q2
20e
130V
3.4mA
PTAT
GAIN BIAS
1.26V
67V67V
TO STAGES
1 THRU 5
TO 2ND
STAGE
S
Figure 27. Signal Input Interface
Limiter Output Interface
The simplified limiter output stage is shown in Figure 28. The
bias for this stage is provided by a temperature-stable reference
voltage of nominally 400 mV which is forced across the external
resistor R
LIM
connected from Pin 9 (LMDR, or limiter drive) by
a special op amp buffer stage. The biasing scheme also intro-
duces a slight “lift” to this voltage to compensate for the finite
current gain of the current source Q3 and the output transistors
Q1 and Q2. A maximum current of 10 mA is permissible (R
LIM
= 40 ). In special applications, it may be desirable to modulate
the bias current; an example of this is provided in the Applica-
tions section. Note that while the bias currents are temperature
stable, the ac gain of this stage will vary with temperature, by
–6 dB over a 120°C range.
A pair of supply and temperature stable complementary currents
is generated at the differential output LMHI and LMLO (Pins
12 and 13), having a square wave form with rise and fall times
of typically 0.4 ns, when load resistors of 50 are used. The
voltage at these output pins may swing to 1.2 V below the sup-
ply voltage applied to VPS2 (Pin 15).

AD8309ARUZ

Mfr. #:
Manufacturer:
Analog Devices Inc.
Description:
Logarithmic Amplifiers 5-500 MHz 100 dB w/ Limiter Output
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union