AD9042
Rev. B | Page 15 of 24
OUTPUT LOADING
When calculating the proper termination resistor, note that the
external load resistor is in parallel with the AD9042 analog
input resistance, 250 Ω. The external resistor value can be
calculated from the following equation:
Care must be taken when designing the data receivers for the
AD9042. It is recommended that the digital outputs drive a
series resistor of 499 Ω followed by a CMOS gate such as the
74AC574. To minimize capacitive loading, there should be only
one gate on each output pin. The digital outputs of the AD9042
have a unique constant slew rate output stage. The output slew
rate is about 1 V/ns independent of output loading. A typical
CMOS gate combined with PCB trace and through hole has a
load of approximately 10 pF. Therefore, as each bit switches, 10 mA
of dynamic current per bit flows in or out of the device. A full-
scale transition can cause up to 120 mA (12 bits × 10 mA/bit) of
current to flow through the digital output stage. The series
resistor minimizes the output currents that can flow in the
output stage. These switching currents are confined between
ground and the DV
CC
pin. Standard TTL gates should be
avoided because they can appreciably add to the dynamic
switching currents of the AD9042.
250
11
1
=
Z
R
T
where
Z is desired impedance.
A dc-coupled input configuration (shown in Figure 35) is
limited by the drive amplifier performance. The on-chip
reference of the AD9042 is buffered using the OP279 dual, rail-
to-rail operational amplifier. The resulting voltage is combined
with the analog source using an AD9631. Pending improvements
in drive amplifiers, this dc-coupled approach is limited to ~75 dB
to 80 dB of dynamic performance depending on which drive
amplifier is used. The AD9631 and OP279 run off ±5 V.
SIGNAL
SOURCE
0pF
TO
50pF
AD9631
50
0.1µF
0.1µF
AD9042
AIN
V
OFFSET
V
REF
200
114
49.9
OP279
(1/2)
OP279
(1/2)
571
1k
79
21
00554-041
×
ns
V
pF
1
1
10
LAYOUT INFORMATION
The pinout of the AD9042 facilitates ease of use and the
implementation of high frequency/high resolution design
practices. All of the digital outputs are on one side of the
package, and all of the inputs are on the other sides of the
package. It is highly recommended that high quality ceramic
chip capacitors be used to decouple each supply pin to ground
directly at the device. Depending on the configuration used for
the encode and analog inputs, one or more capacitors are
required on those input pins. The capacitors used on the
ENCODE
and V
REF
pins must be low inductance chip capacitors
as noted previously.
Figure 35. DC-Coupled Analog Input Circuit
POWER SUPPLIES
Care should be taken when selecting a power source. Linear
supplies are strongly recommended because switching supplies
tend to have radiated components that may be received by the
AD9042. Each of the power supply pins should be decoupled as
close to the package as possible using 0.1 μF chip capacitors.
The AD9042 has separate digital and analog 5 V pins. The AV
CC
pins are the analog supply pins, and the DV
CC
pins are the
digital supply pins. Although analog and digital supplies may
be tied together, best performance is achieved when the supplies
are separate. This is because the fast digital output swings can
couple switching noise back into the analog supplies. Note that
AV
CC
must be held within 5% of 5 V.
Although a multilayer board is recommended, it is not required
to achieve good results. Care should be taken when placing the
digital output runs. Because the digital outputs have such a high
slew rate, the capacitive loading on the digital outputs should be
minimized. Circuit traces for the digital outputs should be kept
short and connected directly to the receiving gate (broken only
by the insertion of the series resistor). Logic fanout for each bit
should be one CMOS gate.
AD9042
Rev. B | Page 16 of 24
DIGITAL WIDEBAND RECEIVERS
INTRODUCTION
Several key technologies are now being introduced that may
forever alter the vision of radio. Figure 36 shows the typical dual
conversion superheterodyne receiver. The signal picked up by
the antenna is mixed down to an intermediate frequency (IF)
using a mixer with a variable local oscillator (LO); the variable
LO is used to tune in the desired signal. This first IF is mixed
down to a second IF using another mixer stage and a fixed LO.
Demodulation takes place at the second or third IF using either
analog or digital techniques.
ADCs
VARIABLE
IF
1
IF
2
FIXED
NARROW-BAND
FILTER
NARROW-BAND
FILTER
I
Q
LNA
RF
900MHz
SHARED ONE RECEIVER PER CHANNEL
00554-054
Figure 36. Narrow-Band Digital Receiver Architecture
If demodulation takes place in the analog domain, then traditional
discriminators, envelope detectors, phase-locked loops, or other
synchronous detectors are generally used to strip the modulation
from the selected carrier.
However, as general-purpose DSP chips such as the ADSP-2181
become more popular, they can be used in many baseband
sampled application such as the one shown in Figure 36. As
shown in the figure, prior to ADC conversion, the signal must be
mixed down and filtered, and the I and Q components must be
separated. These functions are realized through DSP techniques;
however, several key technology breakthroughs are required:
high dynamic range ADCs, such as the AD9042, new DSPs
(highly programmable with fast onboard memory), digital
tuner and filter (with programmable frequency and BW), and
wideband mixers (high dynamic range with >12.5 MHz BW).
WIDEBAND
ADC
FIXED
WIDEBAND
MIXER
WIDEBAND
FILTER
LNA
RF
900MHz
SHARED
"n" CHANNELS
TO DSP
12.5MHz
(416 CHANNELS)
CHANNEL SELECTION
00554-055
Figure 37. Wideband Digital Receiver Architecture
Figure 37 shows such a wideband system. This design shows
that the front-end variable local oscillator has been replaced
with a fixed oscillator (for single-band radios), and the back end
has been replaced with a wide dynamic range ADC, digital
tuner, and DSP. This technique offers many benefits.
First, many passive discrete components that formed the tuning
and filtering functions have been eliminated. These passive
components often require adjusting and special handling
during assembly and final system alignment. Digital
components require no such adjustments; tuner and filter
characteristics are always exactly the same. Moreover, the
tuning and filtering characteristics can be changed through
software. Because software is used for demodulation, different
routines may be used to demodulate different standards such as
AM, FM, GMSK, or any other desired standard. In addition, as
new standards arise or new software revisions are generated,
they may be field installed with standard software update
channels. A radio that performs demodulation in software as
opposed to hardware is often referred to as a soft radio because
it can be changed or modified simply through code revision.
System Description
In the wideband digital radio (see Figure 37), the first down-
conversion functions in much the same way as a block converter
does. An entire band is shifted in frequency to the desired
intermediate frequency. In the case of cellular base station
receivers, 5 MHz to 20 MHz of bandwidth are downconverted
simultaneously to an IF frequency suitable for digitizing with a
wideband ADC. Once digitized, the broadband digital data
stream contains all of the in-band signals. The remainder of the
radio is constructed digitally using special-purpose and general-
purpose programmable DSP to perform filtering, demodulation,
and signal conditioning, not unlike the analog counterparts.
In the narrow-band receiver (see Figure 36), the signal to be
received must be tuned. This is accomplished by using a
variable local oscillator at the first mix-down stage. The first IF
then uses a narrow-band filter to reject out-of-band signals and
condition the selected carrier for signal demodulation.
In the digital wideband receiver (see Figure 37), the variable
local oscillator has been replaced with a fixed oscillator, so
tuning must be accomplished in another manner. Tuning is
performed digitally using a digital downconversion and a filter
chip frequently called a channelizer. The term, channelizer, is
used because the purpose of these chips is to select one channel
out of the many within the broadband of spectrum actually
present in the digital data stream of the ADC.
DECIMATION
FILTER
LOW-PASS
FILTER
DIGITAL
TUNER
COS
SIN
DECIMATION
FILTER
LOW-PASS
FILTER
DATA
I
Q
00554-056
Figure 38. Digital Channelizer
AD9042
Rev. B | Page 17 of 24
Figure 38 shows the block diagram of a typical channelizer.
Channelizers consist of a complex NCO (numerically controlled
oscillator), dual multiplier (mixer), and matched digital filters.
These are the same functions that would be required in an
analog receiver but implemented in digital form. The digital
output from the channelizer is the desired carrier, frequently in
I and Q format; all other signals are filtered and removed based
on the filtering characteristics desired. Because the channelizer
output consists of one selected RF channel, one tuner chip is
required for each frequency received, although only one
wideband RF receiver is needed for the entire band. Data from
the channelizer can then be processed using a digital signal
processor such as the ADSP-2181 or the SHARC ADSP-21062
processor. This data may then be processed through software to
demodulate the information from the carrier.
Figure 39 shows a typical wideband receiver subsystem based
around the AD9042. This strip consists of a wideband IF filter,
amplifier, ADC, latches, channelizer, and interface to a digital
signal processor. This design shows a typical clocking scheme
used in many receiver designs. All timing within the system is
referenced back to a single clock. Although this is not necessary,
it facilitates PLL design, ease of manufacturing, system test, and
calibration. Keeping in mind that the overall performance goal
is to maintain the best possible dynamic range, many choices
must be considered.
One of the biggest challenges is selecting the amplifier used to
drive the AD9042. Because this is a communications application,
the key specification for this amplifier is spurious-free dynamic
range (SFDR). An amplifier should be selected that can provide
SFDR performance better than 80 dB into 250 Ω. One such
amplifier is the AD9631. These low spurious levels are necessary
because harmonics due to the drive amplifier and ADC can
distort the desired signals of interest.
Two other key considerations for the digital wideband receiver
are converter sample rate and IF frequency range. Because
performance of the AD9042 converter is nearly independent
of both sample rate and analog input frequency (see Figure 6,
Figure 7, and Figure 10), the designer has greater flexibility in the
selection of these parameters. Also, because the AD9042 is a
bipolar device, power dissipation is not a function of sample
rate. Thus, there is no penalty paid in power by operating at
faster sample rates. By carefully selecting input frequency range
and sample rate, the drive amplifier and ADC harmonics can
actually be placed out-of-band. Thus, other components such as
filters and IF amplifiers may actually end up being the limiting
factor on dynamic range.
For example, if the system has second and third harmonics that
are unacceptably high, the careful selection of the encode rate
and signal bandwidth can place these second and third harmonics
out-of-band. For the case of an encode rate equal to 40.96 MSPS
and a signal bandwidth of 5.12 MHz, placing the fundamental
at 5.12 MHz places the second and third harmonics out-of-
band as shown in Table 7.
Table 7. Example Frequency Plan
Parameter Value
Encode Rate 40.96 MSPS
Fundamental 5.12 MHz to 10.24 MHz
Second Harmonic 10.24 MHz to 20.48 MHz
Third Harmonic 15.36 MHz to 10.24 MHz
Another option is found through band-pass sampling. If the
analog input signal range is from dc to FS/2, then the amplifier
and filter combination must perform to the specification required.
However, if the signal is placed in the third Nyquist zone (FS to
3 FS/2), the amplifier is no longer required to meet the harmonic
performance required by the system specifications because all
harmonics fall outside the pass-band filter. For example, the
pass-band filter ranges from f
S
to 3 FS/2. The second harmonic
would span from 2 FS to 3 FS, well outside the range of the
pass-band filter. The burden then is placed on the filter design,
provided that the ADC meets the basic specifications at the
frequency of interest. In many applications, this is a worthwhile
trade-off because many complex filters can easily be realized
using SAW and LCR techniques alike at these relatively high IF
frequencies. Although the harmonic performance of the drive
amplifier is relaxed by this technique, intermodulation
performance cannot be sacrificed because intermods must be
assumed to fall in-band for both amplifiers and converters.
PRESELECT
FILTER
LNA
5MHz TO 15MHz
PASS BAND
CMOS
BUFFER
D11
D0
5V (D)5V (A)
AD9042
AIN
ENCODE
ENCODE
M/N PLL
SYNTHESIZER
LO
DRIVE
REF
IN
864MHz
REFERENCE
CLOCK
40.96MHz
12
CHANNELIZER
I AND Q
DATA
CLK
ADSP-2181
NETWORK
CONTROLLER
INTERFACE
499
00554-057
Figure 39. Simplified 5 MHz Wideband “A” Carrier Receiver

AD9042ASTZ

Mfr. #:
Manufacturer:
Analog Devices Inc.
Description:
Analog to Digital Converters - ADC 12-Bit 41MSPS Monolithic
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union

Products related to this Datasheet