AD9042
Rev. B | Page 18 of 24
NOISE FLOOR AND SNR
Oversampling is the act of sampling at a rate that is greater than
twice the bandwidth of the signal desired. Oversampling has
nothing to do with the actual frequency of the sampled signal. It is
the bandwidth of the signal that is key. Band-pass or IF sampling
refers to sampling a frequency that is higher than Nyquist and
often provides additional benefits such as downconversion
using the ADC and track-and-hold as a mixer. Oversampling
leads to processing gains because the faster the signal is digitized,
the wider the distribution of noise. Because the integrated noise
must remain constant, the actual noise floor is lowered by 3 dB
each time the sample rate is doubled. The effective noise density
for an ADC may be calculated by the following equation:
FS
HzV
SNR
rmsNOISE
4
10
/
20/
=
For a typical SNR of 68 dB and a sample rate of 40.96 MSPS, this is
equivalent to 31 nV/√Hz . This equation shows the relationship
between the SNR of the converter and the sample rate FS. This
equation can be used todetermine overall receiver noise.
The SNR for an ADC can be predicted. When normalized to
ADC codes, the following equation accurately predicts the SNR
based on three terms. These are jitter, average DNL error, and
thermal noise. Each of these terms contributes to the noise
within the converter.
()
+
ε+
+×π=
2/1
2
12
2
12
2
22
1
2log20
rmsNOISE
rmsJ
ANALOG
V
tFSNR
where
F
ANALOG
is analog input frequency.
t
J rms
is rms jitter of the encode (rms sum of encode source and
internal encode circuitry).
ε is average DNL of the ADC.
V
NOISE rms
is V rms thermal noise referred to the analog input of
the ADC.
PROCESSING GAIN
Processing gain is the improvement in SNR gained through
DSP processes. Most of this processing gain is accomplished
using the channelizer chips. These special-purpose DSP chips
not only provide channel selection and filtering but also provide
a data rate reduction. Few, if any, general-purpose DSPs can accept
and process data at 40.96 MSPS. The required rate reduction is
accomplished through a process called decimation. The term
decimation rate is used to indicate the ratio of input data rate to
output data rate. For example, if the input data rate is 40.96 MSPS
and the output data rate is 30 kSPS, then the decimation rate
is 1365.
Large processing gains may be achieved in the decimation
and filtering process. The purpose of the channelizer, beyond
tuning, is to provide the narrow-band filtering and selectivity
that traditionally has been provided by the ceramic or crystal
filters of a narrow-band receiver. This narrow-band filtering is
the source of the processing gain associated with a wideband
receiver and is simply the ratio of the pass-band to whole band
expressed in dBc. For example, if a 30 kHz AMPS signal is
digitized with an AD9042 sampling at 40.96 MSPS, the ratio is
0.030 MHz/20.48 MHz. Expressed in log form, the processing
gain is −10 × log (0.030 MHz/20.48 MHz) or 28.3 dB.
Additional filtering and noise reduction techniques can be
achieved through DSP techniques; many applications obtain
additional process gains through proprietary noise reduction
algorithms.
OVERCOMING STATIC NONLINEARITIES WITH
DITHER
Typically, high resolution data converters use multistage techniques
to achieve high bit resolution without large comparator arrays
that would be required if traditional flash ADC techniques were
used. The multistage converter typically provides better wafer
yields, meaning lower cost and much lower power. However,
because it is a multistage device, certain portions of the circuit
are used repetitively as the analog input sweeps from one end of
the converter range to the other. Although the worst DNL error
may be less than 1 LSB, the repetitive nature of the transfer
function can create havoc with low level dynamic signals. Spurious
signals for a full-scale input may be −88 dBc; however, at 29 dB
below full scale, these repetitive DNL errors can cause SFDR to
fall to 80 dBc as shown in Figure 13.
A common technique for randomizing and reducing the effects
of repetitive static linearity is through the use of dither. The
purpose of dither is to force the repetitive nature of static linearity
to appear as if it were random. Then, the average linearity over
the range of dither dominates the SFDR performance. In the
AD9042, the repetitive cycle is every 15.625 mV p-p.
To ensure adequate randomization, 5.3 mV rms is required; this
equates to a total dither power of −32.5 dBm. This randomizes
the DNL errors over the complete range of the residue converter.
Although lower levels of dither such as that from previous
analog stages reduces some of the linearity errors, the full effect
is gained only with this larger dither. Increasing dither even
more can be used to reduce some of the global INL errors.
However, signals much larger than the microvolts proposed in
this data sheet begin to reduce the usable dynamic range of the
converter.
Even with the 5.3 mV rms of noise suggested, SNR is limited to
36 dB if injected as broadband noise. To avoid this problem,
noise can be injected as an out-of-band signal. Typically, this may
be around dc but may just as well be at FS/2 or at some other
frequency not used by the receiver. The bandwidth of the noise
is several hundred kilohertz. By band-limiting and controlling
its location in frequency, large levels of dither can be introduced
into the receiver without seriously disrupting receiver
performance. The result can be a marked improvement in the
SFDR of the data converter.
AD9042
Rev. B | Page 19 of 24
performance. The result can be a marked improvement in the
SFDR of the data converter.
Figure 16 shows the same converter shown in Figure 13 but with
this injection of dither (see Figure 13). SFDR is now 94 dBFS.
Figure 14 and Figure 17 show an SFDR sweep before and after
adding dither.
To fully appreciate the improvement that dither can have on
performance, Figure 15 and Figure 18 show similar dither plots,
one using and one not using dither. Increasing to 128k sample
points lowers the noise floor of the FFT; this simply makes it
easier to see the dramatic reduction in spurious levels resulting
from dither.
14
13
12
11
9
16
15
10
8
1
2
3
4
7
6
5
AD600
A
A
REF
1µF
0.1µF
+15
V
+5V
–5V
OP27
LOW CONTROL
(0V TO 1V)
2k
1k
OPTIONAL HIGH
POWER DRIVE
CIRCUIT
2.2k
16k
NC202
NOISE
DIODE
(Noisecom)
39 390
00554-058
Figure 40. Noise Source (Dither Generator)
The simplest method for generating dither is through the use of
a noise diode (see Figure 40). In this circuit, the noise diode,
NC202, generates the reference noise that is gained up and
driven by the AD600 and OP27 amplifier chain. The level of
noise can be controlled by either presetting the control voltage
when the system is set up or by using a digital-to-analog
converter (DAC) to adjust the noise level based on input signal
conditions. Once generated, the signal must be introduced to
the receiver strip. The easiest method is to inject the signal into
the drive chain after the last downconversion, as shown in
Figure 41.
AD9042
NOISE SOURCE
FROM
RF/IF
AIN
V
OFFSET
V
REF
LPF
00554-059
Figure 41. Using the AD9042 with Dither
RECEIVER EXAMPLE
To determine how the ADC performance relates to overall
receiver sensitivity, the simple receiver in Figure 42 can be
examined. This example assumes that the overall downconversion
process can be grouped into one set of specifications, instead of
individually examining all components within the system and
summing them together. Although a more detailed analysis
should be employed in a real design, this model provides a good
approximation.
In examining a wideband digital receiver, several considerations
must be applied. Although other specifications are important,
receiver sensitivity determines the absolute limits of a radio,
excluding the effects of other outside influences. Assuming that
receiver sensitivity is limited by noise and not by adjacent signal
strength, several sources of noise can be identified and their
overall contribution to receiver sensitivity calculated.
RF/IF
AD9042
CHANNELIZER
REF IN
DSP
ENCODE
40.96MHz
GAIN = 30dB
NF = 20dB
BW = 12.5MHz
SINGLE CHANNEL
BW = 30kHz
00554-060
Figure 42. Receiver Analysis
The first noise calculation to make is based on the signal
bandwidth at the antenna. In a typical broadband cellular
receiver, the IF bandwidth is 12.5 MHz. Given that the power of
noise in a given bandwidth is defined by
P
n
= kTB, where B is
bandwidth,
k = 1.38 × 10
−23
is Boltzmanns constant, and T =
300k is absolute temperature, this gives an input noise power of
5.18 × 10
−14
watts or −102.86 dBm. If the receiver front end has a
gain of 30 dB and a noise figure of 20 dB, then the total noise
presented to the ADC input becomes −52.86 dBm (−102.86 + 30
+ 20) or 0.51 mV rms. Comparing receiver noise to the dither
required for good SFDR, note that in this example, the receiver
supplies about 10% of the dither required for good SFDR.
Based on a typical ADC SNR specification of 68 dB, the
equivalent internal converter noise is 0.140 mV rms. Therefore,
total broadband noise is 0.529 mV rms. Before processing gain,
this is an equivalent SNR (with respect to full scale) of 56.5 dB.
Assuming a 30 kHz AMPS signal and a sample rate of 40.96 MSPS,
the SNR, through processing gain, is increased by 28.3 dB to
84.8 dB. However, if eight strong and equal signals are present
in the ADC bandwidth, each must be placed 18 dB below full
scale to prevent ADC overdrive. In addition, 3 dB to 15 dB
should be used for ADC headroom should another signal come
in-band unexpectedly. For this example, 12 dB of headroom can
be allocated. Therefore, 30 dB of range is given away and the
carrier-to-noise ratio (C/N) is reduced to 54.8 dB (C/N is the
ratio of signal to in-band noise).
AD9042
Rev. B | Page 20 of 24
Assuming that the C/N ratio must be 6 dB or better for accurate
demodulation, one of the eight signals can be reduced by 48.8 dB
before demodulation becomes unreliable. At this point, the
input signal power would be 40.6 μV rms on the ADC input or
−74.8 dBm. Referenced to the antenna, this is −104.8 dBm.
IF SAMPLING, USING THE AD9042 AS A MIX-
DOWN STAGE
Because the performance of the AD9042 extends beyond the
baseband region into the second and third Nyquist zone, the
converter may find many uses as a mix-down converter in both
narrow-band and wideband applications. Many common IF
frequencies exist in this range of frequencies. If the ADC is used
to sample these signals, they are aliased down to baseband during
the sampling process in much the same manner that a mixer
downconverts a signal. For signals in various Nyquist zones, the
following equations may be used to determine the final
frequency after aliasing.
To improve sensitivity, several things can be done. First, the
noise figure of the receiver can be reduced. Because front-end
noise dominates the 0.529 mV rms, each dB reduction in noise
figure translates to an additional dBc of sensitivity. Second,
providing broadband AGC can improve sensitivity by the range
of the AGC. However, the AGC only provides useful
improvements if all in-band signals are kept to an absolute
minimal power level so that AGC can be kept near the
maximum gain.
f
1NYQUISTS
= f
SAMPLE
− f
SIGNAL
f
2NYQUISTS
= abs (f
SAMPLE
− f
SIGNAL
)
f
3NYQUISTS
= 2 × (f
SAMPLE
− f
SIGNAL
)
f
4NYQUISTS
= abs (2 × f
SAMPLE
− f
SIGNAL
)
This noise-limited example does not adequately demonstrate
the true limitations in a wideband receiver. Other limitations
such as SFDR are more restrictive than SNR and noise. Assume
that the ADC has an SFDR specification of −80 dBFS or −76
dBm (full scale = 4 dBm). Also assume that a tolerable carrier-
to-interferer (C/I) (different from C/N) ratio is 18 dB (C/I is the
ratio of signal to in-band interfere). This means that the
minimum signal level is −62 dBFS (−80 plus 18) or −58 dBm.
At the antenna, this is −88 dBm. Therefore, as can be seen,
SFDR (single or multitone) would limit receiver performance in
this example. However, SFDR can be greatly improved through
the use of dither (see Figure 15 and Figure 18). In many cases,
the addition of the out-of-band dither can improve receiver
sensitivity nearly to that limited by thermal noise.
Using the converter to alias down these narrow-band or
wideband signals has many potential benefits. First and
foremost is the elimination of a complete mixer stage, along
with amplifiers, filters, and other devices, reducing cost and
power dissipation.
One common example is the digitization of a 21.4 MHz IF using a
10 MSPS sample clock. Using the equation for the fifth Nyquist
zone, the resultant frequency after sampling is 1.4 MHz. Figure 44
shows performance under these conditions. Even under these
conditions, the AD9042 typically maintains better than 80 dB
SFDR.
FREQUENCY (MHz)
0
–80
–120
–40
–100
–20
–60
POWER RELATIVE TO ADC FULL SCALE (dB)
dc12345
8 7 8 6 2 5 3 4
ENCODE = 10.0MSPS
AIN = 21.4MHz
00554-062
Multitone Performance
Figure 43 shows the AD9042 in a worst-case scenario of four
strong tones spaced fairly close together. In this plot, no dither
was used, and the converter still maintains 85 dBFS of spurious-
free range. As noted in the Overcoming Static Nonlinearities
with Dither section, a modest amount of dither introduced out-
of-band can be used to lower the nonlinear components.
FREQUENCY (MHz)
0
–80
–120
–40
–100
–20
–60
POWER RELATIVE TO ADC FULL SCALE (dB)
3 6 9 7 4 2 5 8
dc 20.516.412.38.24.1
ENCODE = 41MSPS
00554-061
Figure 44. IF Sampling at 21.4 MHz Input
Figure 43. Multitone Performance

AD9042ASTZ

Mfr. #:
Manufacturer:
Analog Devices Inc.
Description:
Analog to Digital Converters - ADC 12-Bit 41MSPS Monolithic
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union

Products related to this Datasheet