4
COMMERCIAL TEMPERATURE RANGE
IDT72V71643 3.3V TIME SLOT INTERCHANGE
DIGITAL SWITCH 4,096 x 4,096
PIN DESCRIPTION
SYMBOL NAME I/O DESCRIPTION
GND Ground. Ground Rail.
Vcc Vcc +3.3 Volt Power Supply.
TX0-15 TX Output 0 to 15 O Serial data output stream. These streams may have a data rate of 2.048 Mb/s, 4.096 Mb/s, 8.192 Mb/s,
(Three-state Outputs) or 16.384 Mb/s.
TX16-31/ TX Output 16 to 31/ O When all 32 output streams are selected via control register, these pins (TX16-31) are output streams 16 to 31
OEI0-15 Output Enable and may have a data rate of 2.048 Mb/s, 4.096 Mb/s, 8.192 Mb/s or 16.384 Mb/s. When output enable
Indication 0 to 15 indication function is selected, these pins (OEI 0-15) reflect the active or three-state status for the corresponding,
(Three-state Outputs) (TX0-15) output streams.
RX0-31 RX Input 0 to 31 I Serial data input stream. These streams may have a data rate of 2.048 Mb/s, 4.096 Mb/s, 8.192 Mb/s,
or 16.384 Mb/s.
F0i Frame Pulse I This input accepts and automatically identifies frame synchronization signals formatted according to
ST-BUS
®
and GCI specifications.
FE/HCLK Frame Evaluation/ I When the WFPS pin is LOW, this pin is the frame measurement input. When the WFPS pin is HIGH, the HCLK
HCLK Clock (4.096 MHZ clock) is required for frame alignment in the wide frame pulse (WFP) mode.
CLK Clock I Serial clock for shifting data in/out on the serial streams (RX/TX 0-31).
TMS Test Mode Select I JTAG signal that controls the state transitions of the TAP controller. This pin is pulled HIGH by an internal
pull-up when not driven.
TDI Test Serial Data In I JTAG serial test instructions and data are shifted in on this pin. This pin is pulled HIGH by an internal pull-up
when not driven.
TDO Test Serial Data Out O JTAG serial data is output on this pin on the falling edge of TCK. This pin is held in high-impedance state when
JTAG scan is not enabled.
TCK Test Clock I Provides the clock to the JTAG test logic.
TRST Test Reset I Asynchronously initializes the JTAG TAP controller by putting it in the Test-Logic-reset state. This pin is pulled
by an internal pull-up when not driven. This pin should be pulsed LOW on power-up, or held LOW, to ensure
that the IDT72V71643 is in the normal functional mode.
RESET Device Reset I This input (active LOW) puts the IDT72V71643 in its reset state that clears the device internal counters, registers
and brings TX0-31 and microport data outputs to a high-impedance state. In normal operation, the RESET
pin must be held LOW for a minimum of 100ns to reset the device.
WFPS Wide Frame Pulse Select I When 1, enables the wide frame pulse (WFP) Frame Alignment interface. When 0, the device operates in
ST-BUS
®
/GCI mode.
DS Data Strobe I This active LOW input works in conjunction with CS to enable the read and write operations.
R/W Read/Write I This input controls the direction of the data bus lines during a microprocessor access.
CS Chip Select I Active LOW input used by a microprocessor to activate the microprocessor port of IDT72V71643.
A0-14 Address Bus 0 to 14 I These pins allow direct access to Connection Memory, Data Memory and internal control registers.
D0-15 Data Bus 0-15 I/O These pins are the data bits of the microprocessor port.
DTA Data Transfer O This active LOW signal indicates that a data bus transfer is complete. When the bus cycle ends, this pin drives
Acknowledgment HIGH and then goes high-impedance, allowing for faster bus cycles with a weaker pull-up resistor. A pull-up
resistor is required to hold a HIGH level when the pin is in high-impedance.
ODE Output Drive Enable I This is the output enable control for the TX0-31 serial outputs. When ODE input is LOW and the OSB bit of
the IMS register is LOW, TX0-31 are in a high-impedance state. If this input is HIGH, the TX0-31 output
drivers are enabled. However, each channel may still be put into a high-impedance state by using the per
channel control bit in the Connection Memory.
5
COMMERCIAL TEMPERATURE RANGE
IDT72V71643 3.3V TIME SLOT INTERCHANGE
DIGITAL SWITCH 4,096 x 4,096
DESCRIPTION (CONTINUED)
The IDT72V71643 is capable of switching up to 4,096 x 4,096 channels
without blocking. Designed to switch 64 Kbit/s PCM or N x 64 Kbit/s data, the
device maintains frame integrity in data applications and minimizes throughput
delay for voice applications on a per channel basis.
The serial input streams (RX) and serial output streams (TX) of the
IDT72V71643 can be run up to 16.384 Mb/s allowing 256 channels per 125μs
frame. Depending on the input and output data rates the device can support
up to 32 serial streams.
With two main operating modes, Processor mode and Connection Mode,
the IDT72V71643 can easily switch data from incoming serial streams (Data
Memory) or from the controlling microprocessor (Connection Memory). As
control and status information is critical in data transmission, the Processor mode
is especially useful when there are multiple devices sharing the input and output
streams.
With three main configuration modes, Regular, Mux/Demux, and Split mode
the IDT72V71643 is designed to work in a mixed data-rate environment. In
Mux/Demux mode, all of the input streams work at one data rate and the output
streams at another. Depending on the configuration, more or less serial streams
will be available on the inputs or outputs to maintain a non-blocking switch. In
Split Mode, half of the input streams are set at one rate, while the other half are
set to another rate. In this mode, both input and output streams are symmetrical.
With data coming from multiple sources and through different paths, data
entering the device is often delayed. To handle this problem, the IDT72V71643
has a frame evaluation feature to allow individual streams to be offset from the
frame pulse in half clock-cycle intervals up to +4.5 clock cycles for speeds up
to 8 Mb/s or +2.5 clock cycles for 16 Mb/s. (See Table 8 for maximum allowable
skew).
The IDT72V71643 also provides a JTAG test access port, an internal
loopback feature, memory block programming, a simple microprocessor
interface and automatic ST-BUS
®
/GCI sensing to shorten setup time, aid in
debugging and ease use of the device without sacrificing capabilities.
FUNCTIONAL DESCRIPTION
DATA AND CONNECTION MEMORY
All data that comes in through the RX inputs go through a serial-to-parallel
conversion before being stored into internal Data Memory. The 8 KHz frame
pulse (F0i) is used to mark the 125μs frame boundaries and to sequentially
address the input channels in Data Memory. The Data Memory is only written
by the device from the RX streams and can be read from either the TX streams
or the microprocessor.
Data output on the TX streams may come from either the Serial Input Streams
(Data Memory) or from the microprocessor (Connection Memory). In the case
that RX input data is to be output, the addresses in Connection Memory are used
to specify a stream and channel of the input. The Connection Memory is setup
in such a way that each location corresponds to an output channel for each
particular stream. In that way, more than one channel can output the same data.
In Processor mode, the microprocessor writes data to the Connection Memory
locations corresponding to the stream and channel that is to be output. The lower
byte (8 least significant bits) of the Connection Memory is output every frame
until the microprocessor changes the data or mode of the channel. By using this
Processor mode capability, the microprocessor can access input and output
time-slots on a per channel basis.
The most significant bits of the Connection Memory are used to control per
channel functions such as Processor mode, Constant or Variable Delay mode,
three-state of output drivers, and the Loopback function.
OPERATING MODES
In addition to Regular mode where input and output streams are operating
at the same rate, the IDT72V71643 incorporates a rate matching function in two
different modes: Split mode and Mux/Demux mode. In Split mode some of the
input streams are set at one rate, while others are set to another rate. Both input
and output streams are symmetrical. In Mux/Demux mode, all input streams
are operating at the same rate, while output streams are operating at a different
rate. All configurations are non-blocking. These two modes can be entered
by setting the DR3-0 bits in the Control Register, see Table 5.
OUTPUT IMPEDANCE CONTROL
In order to put all streams in three-state, all per-channel three-state control
bits in the Connection Memory are set (MOD0 and MOD1 = 1) or both the ODE
pin and the OSB bit of the Control Register must be zero. If any combination
other than 0-0, for the ODE pin and the OSB bit, is used, the three-state control
of the streams will be left to the state of the MOD1 and MOD0 bits of the Connection
Memory. The IDT72V71643 incorporates a memory block programming
feature to facilitate three-state control after reset. See Table 1 for Output High-
Impedance Control.
SERIAL DATA INTERFACE TIMING
When a 16Mb/s serial data rate is required, the master clock frequency
will be running at 16.384MHz resulting in a single-bit per clock. For all other
cases, 2Mb/s, 4Mb/s, and 8Mb/s, the master clock frequency will be twice the
fastest data rate on the serial streams. Use Table 5 to determine clock speed
and DR3-0 bits in the Control Register to setup the device. The IDT72V71643
provides two different interface timing modes, ST-BUS
®
or GCI. The
IDT72V71643 automatically detects the presence of an input frame pulse and
identifies it as either ST-BUS
®
or GCI.
In ST-BUS
®
, when running at 16.384MHz, data is clocked out on the
falling edge and is clocked in on the subsquent rising-edge. At all other data
rates, there are two clock cycles per bit and every second falling edge of the
master clock marks a bit boundary and the data is clocked in on the rising edge
of CLK, three quarters of the way into the bit cell. See Figure 17 for timing.
In GCI format, when running at 16.384MHz, data is clocked out on the
rising edge and is clocked in on the subsquent falling edge. At all other data
rates, there are two clock cycles per bit and every second rising edge of the
master clock marks the bit boundary and data is clocked in on the falling edge
of CLK at three quarters of the way into the bit cell. See Figure 18 for timing.
INPUT FRAME OFFSET SELECTION
Input frame offset selection allows the channel alignment of individual input
streams to be offset with respect to the output stream channel alignment (i.e. F0i).
Although input data is synchronous, delays can be caused by variable path
serial backplanes and variable path lengths, which may be implemented in large
centralized and distributed switching systems. Because data is often delayed
this feature is useful in compensating for the skew between clocks.
Each input stream can have its own delay offset value by programming the
frame input offset registers (FOR, Table 7). The frame offset shown is a function
of the data rate, and can be as large as +4.5 master clock (CLK) periods forward
with a resolution of ½ clock period. To determine the maximum offset allowed
see Table 8.
SERIAL INPUT FRAME ALIGNMENT EVALUATION
The IDT72V71643 provides the frame evaluation (FE) input to determine
different data input delays with respect to the frame pulse F0i. Setting the start
frame evaluation (SFE) bit low for at least one frame starts a measurement cycle.
6
COMMERCIAL TEMPERATURE RANGE
IDT72V71643 3.3V TIME SLOT INTERCHANGE
DIGITAL SWITCH 4,096 x 4,096
When the SFE bit in the Control Register is changed from low to high, the
evaluation starts. Two frames later, the complete frame evaluation (CFE) bit of
the frame alignment register (FAR) changes from low to high to signal that a valid
offset measurement is ready to be read from bits 0 to 11 of the FAR register. The
SFE bit must be set to zero before a new measurement cycle is started.
In ST-BUS
®
mode, the falling edge of the frame measurement signal (FE)
is evaluated against the falling edge of the ST-BUS
®
frame pulse. In GCI mode,
the rising edge of FE is evaluated against the rising edge of the GCI frame pulse.
See Table 6 and Figure 6 for the description of the frame alignment register.
MEMORY BLOCK PROGRAMMING
The IDT72V71643 provides users with the capability of initializing the entire
Connection Memory block in two frames. To set bits 15 to 13 of every Connection
Memory location, first program the desired pattern in bits 9 to 7 of the Control
Register.
Setting the memory block program (MBP) bit of the control register high
enables the block programming mode. When the block programming enable
(BPE) bit of the Control Register is set to high, the block programming data will
be loaded into the bits 15 to 13 of every Connection Memory location. The other
Connection Memory bits (bit 12 to bit 0) are loaded with zeros. When the memory
block programming is complete, the device resets the BPE bit to zero.
LOOPBACK CONTROL
The loopback control (LPBK) bit of each Connection Memory location allows
the TX output data to be looped backed internally to the RX input for diagnostic
purposes.
If the LPBK bit is high, the associated TX output channel data is internally
looped back to the RX input channel (i.e., data from TXn channel m routes to
the RXn channel m internally); if the LPBK bit is low, the loopback feature is
disabled. For proper per-channel loopback operation, the contents of frame
delay offset registers must be set to zero and the device must be in regular switch
mode (DR3-0 = 0x0, 0x1 or 0x2).
DELAY THROUGH THE IDT72V71643
The switching of information from the input serial streams to the output serial
streams results in a throughput delay. The device can be programmed to
perform time-slot interchange functions with different throughput delay capabili-
ties on a per-channel basis. For voice applications, Variable throughput delay
is best as it ensures minimum delay between input and output data. In wideband
data applications, Constant throughput delay is best as the frame integrity of the
information is maintained through the switch.
The delay through the device varies according to the type of throughput
delay selected in the MOD1 and MOD0 bits of the Connection Memory.
VARIABLE DELAY MODE (MOD1-0 = 0x0)
In this mode, the delay is dependent only on the combination of source and
destination serial stream speed. Although the minimum delay achievable is
dependent on the input and output serial stream speed, if data is switched
out +3 channels of the slowest data rate, the data will be switched out in the same
frame except if the input and output data rates are both 16 Mb/s (DR3-0 = 0x3).
(See Figure 2 for example).
For example, given the input data rate is 2 Mb/s and the output data rate is
8 Mb/s, input channel CH0 can be switch out by output channel CH12. In the
above example the input streams are slower than the output streams. Also, for
every 2 Mb/s time slot there are four 8 Mb/s time slots, thus a three 2 Mb/s channel
delay equates to 12 output channel time slots. See Figure 2 for this example and
other examples of minimum delay to guarantee transmission in the same frame.
CONSTANT DELAY MODE (MOD1-0 = 0x1)
In this mode, frame integrity is maintained in all switching configurations by
making use of a multiple Data Memory buffer. Input channel data is written into
the Data Memory buffers during frame n will be read out during frame n+2.
Figure 1 shows examples of Constant Delay mode.
MICROPROCESSOR INTERFACE
The IDT72V71643’s microprocessor interface looks like a standard RAM
interface to improve integration into a system. With a 15-bit address bus and a
16-bit data bus, read and writes are mapped directly into Data and Connection
memories and require only one Master Clock cycle to access. By allowing the
internal memories to be randomly accessed in one cycle, the controlling
microprocessor has more time to manage other peripheral devices and can
more easily and quickly gather information and setup the switch paths.
Table 2 shows the mapping of the addresses into internal memory blocks,
Table 3 shows the Control Register information and Figure 13 and Figure 14
shows asynchronous and synchronous microprocessor accesses.
MEMORY MAPPING
The address bus on the microprocessor interface selects the internal
registers and memories of the IDT72V71643. The two most significant bits of the
address select between the registers, Data Memory, and Connection Memory.
If A14 and A13 are HIGH, A12-A0 are used to address the Data Memory (Read
Only). If A14 is HIGH and A13 is LOW, A12-A0 are used to address Connection
Memory (Read/Write). If A14 is LOW and A13 is HIGH A12-A9 are used to select
the Control Register, Frame Alignment Register, and Frame Offset Registers.
See Table 2 for mappings.
CONTROL REGISTER
As explained in the Serial Data Interface Timing and Switching Configura-
tions sections, after system power-up, the Control Register should be pro-
grammed immediately to establish the desired switching configuration.
The data in the Control Register consists of the Memory Block Programming
bit (MBP), the Block Programming Data (BPD) bits, the Begin Block Program-
ming Enable (BPE), the Output Stand By (OSB), Start Frame Evaluation (SFE),
and Data Rate Select bits (DR 3-0). As explained in the Memory Block
Programming section, the BPE begins the programming if the MBP bit is enabled.
This allows the entire Connection Memory block to be programmed with the
Block Programming Data bits.
CONNECTION MEMORY CONTROL
If the ODE pin or the OSB bit is high, the MOD1-0 bits of each Connection
Memory location controls the output drivers. See Table 1 for detail. The
Processor Channel (PC) mode is entered by a 1-0 of the MOD1-0 of the
Connection Memory. In Processor Channel Mode, this allows the microproces-
sor to access TX output channels. Once the MOD1-0 bits are set, the lower 8
bits of the Connection Memory will be output on the TX serial streams. Also
controlled in the Connection Memory is the Variable Delay mode or Constant
Delay mode. Each Connection Memory location allows the per-channel
selection between Variable and Constant throughput Delay modes and
Processor mode.

72V71643BC8

Mfr. #:
Manufacturer:
IDT
Description:
Digital Bus Switch ICs 4K X 4K RATE MATCHING TSI
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union