DS1992/DS1993
4 of 17
Figure 4a. DS1993 MEMORY MAP
PAGE 0
PAGE
PAGE 1
PAGE 2
PAGE 3
PAGE 4
PAGE 5
PAGE 6
PAGE 7
PAGE 8
PAGE 9
PAGE 10
PAGE 11
PAGE 12
PAGE 13
PAGE 14
PAGE 15
SCRATCHPAD
MEMORY
0000h
0020h
0040h
0060h
0080h
00A0h
00C0h
00E0h
0100h
0120h
0140h
0160h
0180h
01A0h
01C0h
01E0h
NOTE: Each page is 32 bytes (256 bits). The hex values
represent the starting address for each page or register.
Figure 4b. DS1992 MEMORY MAP
PAGE 0
PAGE
PAGE 1
PAGE 2
PAGE 3
SCRATCHPAD
MEMORY
0000h
0020h
0040h
0060h
NOTE: Each page is 32 bytes (256 bits). The hex values
represent the starting address for each page or register.
DS1992/DS1993
5 of 17
MEMORY
The memory map in Figure 4 shows a 32-Byte page called the scratchpad, and additional 32-Byte pages
called memory. The DS1992 contains pages 0 though 3 that make up the 1024-bit SRAM. The DS1993
contain pages 0 through 15 that make up the 4096-bit SRAM.
The scratchpad is an additional page that acts as a buffer when writing to memory. Data is first written to
the scratchpad where it can be read back. After the data has been verified, a copy scratchpad command
transfers the data to memory. This process ensures data integrity when modifying the memory.
MEMORY FUNCTION COMMANDS
The Memory Function Flow Chart (Figure 6) describes the protocols necessary for accessing the memory.
An example follows the flow chart. Three address registers are provided as shown in Figure 5. The first
two registers represent a 16-bit target address (TA1, TA2). The third register is the ending offset/data
status byte (E/S).
The target address points to a unique Byte location in memory. The first 5 bits of the target address
(T4:T0) represent the Byte offset within a page. This Byte offset points to one of 32 possible Byte
locations within a given page. For instance, 00000b points to the first Byte of a page where as 11111b
would point to the last Byte of a page.
The third register (E/S) is a read only register. The first 5 bits (E4: E0) of this register are called the
ending offset. The ending offset is a Byte offset within a page (1 of 32 Bytes). Bit 5 (PF) is the partial
Byte flag. Bit 6 (OF) is the overflow flag. Bit 7 (AA) is the authorization accepted flag.
Figure 5. ADDRESS REGISTERS
7
6
5
4
3
2
1
0
TARGET ADDRESS (TA1) T7 T6 T5 T4 T3 T2 T1 T0
TARGET ADDRESS (TA2) T15 T14 T13 T12 T11 T10 T9 T8
ENDING ADDRESS WITH
DATA STATUS (E/S)
(READ ONLY)
AA OF PF E4 E3 E2 E1 E0
Write Scratchpad Command [0Fh]
After issuing the write scratchpad command, the user must first provide the 2-Byte target address,
followed by the data to be written to the scratchpad. The data is written to the scratchpad starting at the
byte offset (T4:T0). The ending offset (E4:E0) is the Byte offset at which the host stops writing data. The
maximum ending offset is 11111b (31d). If the host attempts to write data past this maximum offset, the
overflow flag (OF) is set and the remaining data is ignored. If the user writes an incomplete Byte and an
overflow has not occurred, the partial Byte flag (PF) is set.
Read Scratchpad Command [AAh]
This command can be used to verify scratchpad data and target address. After issuing the read scratchpad
command, the user can begin reading. The first two Bytes are the target address. The next Byte is the
ending offset/data status Byte (E/S) followed by the scratchpad data beginning at the Byte offset (T4: T0).
The user can read data until the end of the scratchpad, after which the data read is all logic 1’s.
DS1992/DS1993
6 of 17
Copy Scratchpad [55h]
This command is used to copy data from the scratchpad to memory. After issuing the copy scratchpad
command, the user must provide a 3-byte authorization pattern. This pattern must exactly match the data
contained in the three address registers (TA1, TA2, E/S, in that order). If the pattern matches, the AA
(Authorization Accepted) flag is set and the copy begins. A logic 0 is transmitted after the data has been
copied until the user issues a reset pulse. Any attempt to reset the part is ignored while the copy is in
progress. Copy typically takes 30µs.
The data to be copied is determined by the three address registers. The scratchpad data from the
beginning offset through the ending offset is copied to memory, starting at the target address. Anywhere
from 1 to 32 Bytes can be copied to memory with this command. Whole Bytes are copied even if only
partially written. The AA flag is cleared only by executing a write scratchpad command.
Read Memory [F0h]
The read memory command can be used to read the entire memory. After issuing the command, the user
must provide the 2-Byte target address. After the two Bytes, the user reads data beginning from the target
address and may continue until the end of memory, at which point logic 1’s are read. It is important to
realize that the target address registers contains the address provided. The ending offset/data status Byte
is unaffected.
The hardware of the DS199x provides a means to accomplish error-free writing to the memory section.
To safeguard reading data in the 1-Wire environment and to simultaneously speed up data transfers, it is
recommended to packetize data into data packets of the size of one memory page each. Such a packet
would typically store a 16-bit CRC with each page of data to ensure rapid, error-free data transfers that
eliminate having to read a page multiple times to determine if the received data is correct or not. (See
Application Note 114 for the recommended file structure to be used with the 1-Wire environment.)

DS1993L-F5+

Mfr. #:
Manufacturer:
Maxim Integrated
Description:
iButtons & Accessories 1Kb/4Kb Memory iButton
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union

Products related to this Datasheet